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Abstract

A wavelet-based method is developed for the numerical modelling of acoustic and

elastic wave propagation. Several techniques are implemented together to develop the

method. Using a displacement-velocity formulation and treating spatial derivatives

with linear operators based on wavelet transform, the wave equations are rewritten as

a system of equations whose evolution in time is controlled by first-order derivatives.

The linear operators for the spatial derivatives are treated in wavelet bases by projection

with a wavelet transform. The discretized solution in time can then be represented in

an explicit recursive form using a semigroup approach. Absorbing boundary conditions

are considered implicitly by including attenuation terms in the governing equations, and

the traction-free boundary conditions can be implemented by augmenting the system of

equations with equivalent force terms at the boundaries.

This wavelet-based method is applied to acoustic, SH and P-SV waves for several

2-D models with rigid or traction-free boundary conditions, and numerical results are

compared with the analytic solutions. Also, the wavelet-based method is extended

to problems with topography using a grid-mapping technique. The method is stable

even in the applications to highly-varying topography problems and generates accurate

responses. The wavelet-based approach is also appropriate for modelling in complex

media with highly perturbed random media or with strong heterogeneities. The new

technique is shown to be suitable for accurate and stable modelling of wave propagation

in general complex media.

The wavelet approach is then expanded to models with localised heterogeneity, with

significant contrasts with their surroundings. We consider zones with both lowered

wavespeed such as a fault gouge zone and elevated wavespeeds as in a subduction zone.

In each of these situations the source lies within the heterogeneity. The representation of

the source has therefore been adapted to work directly in a heterogeneous environment,

rather than using a locally homogeneous zone around the source. This extension also

allows the wavelet method to be used with a wider variety of sources, e.g., propagating

sources. For the fault zone we consider both point and propagating sources through

a moment tensor representation, and reveal significant trapped waves along the gouge
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zone as well as permanent displacements. For subduction zones a variety of effects are

produced depending on the depth and position of the source relative to the subducting

slab. A variety of secondary waves, such as reflected and interface waves, can be

produced in wavetrains at regional distances and tend to be more important for greater

source depth.

The high stability and accuracy of the wavelet-based method in highly perturbed

media allows this approach to be exploited for the investigation of seismic-wave

scattering in several stochastic (Gaussian, exponential, von Karman) random media. The

scattering attenuation depends on the correlation distance of the random heterogeneities,

the velocity ratio of P and S waves, and the frequency content of the incident waves.

Theoretical attenuation variation is derived for the comparisons with numerical results

by using the first-order Born approximation. The minimum scattering angle for these

stochastic media is found to be in the range 60-90 degrees, and it appears that methods

such as finite-differences may overestimate scattering attenuation when the level of the

heterogeneity is high.

The characteristics of scattering attenuation patterns in elastic waves are investigated

using the theoretical expressions for P and S waves. S waves lose more energy in the

low frequency range (
�����

1 km/s, where
���

is the normalized frequency) than P waves,

and the phenomenon is reversed at high frequency range. The frequency dependency

of seismic scattering makes the scattering attenuation ratio increase with frequency at

0.1 � ��� � 2 km/s, and the ratio of P and S scattering is nearly constant outside these

ranges of normalized frequency. The minimum ratio is determined to be about 0.4 and

the maximum ratio increases with the Hurst number ( � ) for von Karman random media

(including exponential random media) from 1 ( � =0.05) to 1.7 ( � =0.5). Gaussian random

media display a steep change in the P/S scattering ratio and may not be suitable for the

representation of natural random heterogeneities in the earth. With an appropriate choice

of the Hurst number, the von Karman model can reproduce the random heterogeneities

of the crust.

From complementary studies on scatterings of acoustic and SH waves in stochastic

random media, the effects of physical-parameter perturbation on scattering are resolved.

Due to the difference in the form of the equations between acoustic and elastic

waves, i.e., the differences in the placement of the density and Lamé coefficients,

there are characteristic differences in scattering patterns and the attenuation rates. The

perturbation in the density in elastic waves introduces additional energy loss in primary

waves, and the energy loss is proportional to the magnitude of the density perturbation.

Finally, elastic waves are modelled in media with randomly distributed fluid-filled
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circular cavities, which is a challenging problem for numerical techniques. The

energy dissipation of the primary waves is proportional to the scale of the cavities.

Theoretical attenuation variations for media with circular cavities, which may be filled

with any materials (e.g., vacuum, fluid, elastic materials), have been formulated and

they are compared with the numerical results for the media with fluid-filled cavities.

The numerically estimated attenuation rates agree well with the theoretical variation.

The attenuation rates increase linearly with normalized wavenumber, unlike those in

stochastic random media that display a parabolic trend for the normalized wavenumber.

Also, the normalized attenuation rates are identical between those measured from media

with a same normalized wavenumber (i.e., same radius of cavities) even if the number

densities (number of cavities per area in a medium) are different. It appears that random

heterogeneities in a specific region can be described properly with combined use of

stochastic random heterogeneities and random heterogeneities with high impedance by

considering the scattering attenuation patterns.
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1
Introduction

1.1 Previous wavelet-based techniques and motivation of this study

The discrete wavelet transform (Daubechies, 1992) has become a powerful tool in

signal analysis because wavelets are confined in both the frequency and time domains.

The transformation is based on a multiresolution analysis that projects a signal onto

successive wavelet subspaces representing different scales of variation.

Applications of wavelets have been made for several aspects of seismic signal

processing such as the determination of the onset time of arrival of a specific phases

(Anant & Dowla, 1997; Tibuleac & Herrin, 1999), measurement of an anisotropy rate

in certain regions (Bear et al., 1999), and the estimation of a time varying spectral

density matrix (Lilly & Park, 1995). However, the applications of wavelets are not

restricted to signal processing, and have been extended to numerical analysis as well

exploiting the adaptivity and compactness achievable in the wavelet domain. Lewalle

(1998) has exploited an explicit approach for certain classes of problem by a choice of

wavelets which can be matched to the appropriate equations. He has applied Hermitian

wavelets, the derivatives of a Gaussian bell-shaped curve, to a diffusion problem through

a canonical transformation and showed a promising development for the numerical

prediction of intermittent and nonhomogeneous phenomenon.

The adaptivity of wavelets has been one of the major motivations for the

implementation of wavelets in numerical analysis (Holmström, 1999; Lippert et al., 1998;

Fröhlich & Schneider, 1997). Holmström (1999) has implemented a composite technique

to use the Deslauriers-Dubuc interpolating wavelets (DD wavelets, see, Deslauriers &

Dubuc (1989); Dubuc (1986)) as a supplementary method to a usual finite difference (FD)

scheme; so that he could reduce the computational cost in FD computation by imposing

a threshold on the size of wavelet coefficients. However, the composite scheme does not
1
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escape the problems inherent in FD methods, for example, accumulation of errors across

the grid.

Lippert et al. (1998) have implemented a similar approach based on the adaptivity

of DD wavelets in solving a Poisson equation. They have tried to represent physical

operators (differential operators) in multilevel spaces based on DD wavelets. With the

help of the adaptive scheme they could solve a problem having local nonlinear coupling

in a domain with given accuracy (or, resolution) and less computational labour compared

to non-adaptive full-grid based methods. Such an adaptive approach to parabolic

equations may have difficulties with transient nonlinear phenomena because of the need

to continually update the operators at each time step.

Fröhlich & Schneider (1997) have applied wavelets to obtain numerical solutions of a

reaction-diffusion system in one- and two-dimensional spaces and they have also used

the adaptivity of wavelets for space discretization. They have been able to incorporate

inherently periodic boundary conditions in special cases such as an outward burning

flame. However, many natural phenomena do not satisfy periodic boundary conditions

(e.g., adiabatic reactions at the boundaries) and then it is difficult to use this type of

wavelet-based method.

Qian & Weiss (1993) have applied the wavelet-Galerkin method to obtain numerical

solution of PDEs, especially boundary value problems (e.g., Helmholtz equation) in

nonseparable domains. With the introduction of an ‘extensive wavelet-capacitance

matrix technique’ which shows fast convergence at relatively coarse levels of

discretization, they have been able to handle the boundary geometry effectively. Cai

& Wang (1996) have demonstrated the applicability of adaptive wavelet collocation

methods using cubic splines for linear and nonlinear hyperbolic PDEs with initial

boundary conditions in 1-D spatial domain. We note that Cai & Wang have introduced

different shapes of wavelets and scaling functions for internal and boundary regions, and

could treat the boundary effects correctly without contaminating other regions. Dahmen

(1997) has reviewed basic theories of the wavelet-based scheme and adaptive techniques

for numerical simulation for elliptic and parabolic problems.

Recently some numerical analysis based on wavelets has been applied in modelling

of geophysical problems. In Vasilyev et al. (2001) the adaptive multilevel wavelet

collocation method has been implemented in modelling of viscoelastic plume-lithosphere

interaction by solving the partial differential equations representing viscoelastic flows

with localized viscosity variations. Also, Rosa et al. (2001) has demonstrated that a

wavelet transform could be used to model static physical quantities in elastic media (e.g.,

displacement and stress fields) with consideration of boundary conditions.
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So far the adaptivity which leads to a reduction in computational labour and in

memory use via grid adaptation or wavelet-scale adaptation, has been one of most

attractive reasons for the use of wavelet-based scheme in numerical studies. However,

the grid-adaptivity can only be considered in a limited way for a time-dependent

PDE system due to the constraints on the spatial grid steps for stable and accurate

computation, for instance, the relationship to the slowest wave speed in wave

propagation modelling (see, Section 3.9). Also, such wavelet-scale adaptivity can not be

applied properly when the target vector has a broad frequency content, e.g., a wavefield

composed by various scattering waves.

Another important aspect is that a wavelet scheme can represent the action of operators

with high accuracy and stability through a projection technique on to wavelet-based

subspaces with compact support as a basis (e.g., Daubechies wavelets (Beylkin, 1992),

B-spline wavelets (Jameson, 1995)). Especially for time-dependent PDEs (e.g., wave

equations), high accuracy in numerical differentiation is essential since this factor is

directly related to the confidence of the numerical results and also in the reduction

of computational load through implementation of larger spatial grid steps and larger

time steps (see, Section 3.9). For this purpose, the Fourier method (Kosloff & Baysal,

1982) which can in principle achieve high accuracy in numerical differentiation has been

introduced in seismological modelling studies. However, the Fourier method often runs

into difficulties in incorporating physical boundary conditions (e.g., vanishing tractions).

The Chebyshev-pseudospectral method (Kosloff et al., 1990; Carcione, 1994) could reduce

such problems by introducing a Chebyshev method for the vertical derivatives needed

in the boundary condition.

We show that a wavelet-based method can give not only high accuracy in numerical

differentiation, but also a flexible implementation of physical boundary conditions in the

modelling of acoustic and elastic wave propagation. We exploit the use of a non-standard

form (NS-form) of matrix representation based on the work of Beylkin (1992, 1993), with

an extension to separable multi-dimensional operators.

1.2 Methods for modelling of wave propagation

A number of different methods have been applied to the numerical simulations of wave

propagation in general complex media, such as finite difference, pseudospectral and

spectral element methods. The finite difference method (FDM) has a long history in

numerical modelling of wave propagation, and has been steadily improved (e.g., Kelly

et al., 1976; Virieux, 1986; Bayliss et al., 1986, Graves, 1996; Moczo et al., 2000) with

implementation to various studies (e.g., Frankel & Clayton, 1986; Yomogida & Etgen,
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1993; Frankel, 1993) since the method is comparatively easy for code development and

needs relatively small computer memory. However, the FDM has difficulty in treating

a free surface with topography or internal irregular boundaries (e.g., Moczo et al., 1997;

Moczo, 1998); in order to treat this sort of problem, a hybrid technique implementing

additional favorable method (e.g., finite element method) supplementarily has been

introduced (see, Moczo et al., 1997). Also, FDM has a tendency that numerical errors

are accumulated across the grid during computation.

The pseudospectral method (Augenbaum, 1992; Kosloff et al., 1990) based on

Chebyshev expansions can provide higher accuracy spatial differentiation than simple

FDM by using a series of global, infinitely differentiable basis functions. Also, this

method distributes the error throughout the whole domain unlike the usual grid-based

methods such as FDM. This style of computation can achieve good results with fewer

grid points per wavelength than FDM, but care needs to be taken to avoid grid dispersion

from the implementation of the nonuniform sampling grid system for the collocation

points of the basis functions.

The spectral element method (SEM) has been introduced relatively recently for the

modelling of elastic wave propagation (Faccioli et al., 1996; Komatitsch & Vilotte,

1998). By including both the boundary conditions and force terms in a variational

form of the governing equations and using element interaction, the SEM satisfies the

free surface boundary condition implicitly and thereby avoids the complications for

the implementation of boundary conditions encountered in other methods. Generally,

the SEM can generate accurate modelling for most solid elastic media. However,

for a fluid-solid layered medium problem, the method needs a special formulation

of governing equations in terms of displacements in the solid region and velocity

potential in the fluid region, and an explicit conditional time stepping should be applied

(see, Komatitsch et al., 2000) for stable and accurate modelling. Therefore, the SEM

computational procedure becomes more complex and is difficult to use for such cases

as random media, the presence of a fluid-filled cavity or an inhomogeneous fluid layer.

We note that FDM also has some difficulty in treatment of liquid-solid interfaces and

therefore needs special computational boundary conditions at the interfaces (see, Stephen

et al., 1985).

In seismological studies, the complexity of earth processes leads to the need for stable

and accurate modelling of elastic wave propagation media with randomly distributed

cavities (or, cracks) or in stochastic random heterogeneous media. However, existing

methods have some limitations in the treatment of such media. The FDM can not

generate an accurate response for a medium with highly varying physical parameters
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because of the limited accuracy of differentiation and strong numerical dispersion.

Also, the Chebyshev-pseudospectral method has a difficulty in treatment of random

heterogeneity inside a medium due to its uneven grid steps. In the same way, it is

difficult to design a mesh for stochastic heterogeneous media for SEM and also difficult

to implement the presence of fluid-filled cavities.

So, for the treatment of complex media, several techniques have been introduced. A

boundary integral method has been implemented for modelling in media with randomly

distributed cavities (Yomogida & Benites, 1995). Such boundary integral methods can

deal well with heterogeneities inside a medium with irregular interfaces (e.g., cavities,

cracks). The boundary conditions are satisfied by including effective sources at the

boundaries at each time step. For a homogeneous background medium it is possible

to get an accurate time response because the necessary Green’s functions can be found

analytically. However, it is difficult for the method to be applied to media with

heterogeneous backgrounds (including layered media) because the Green’s functions

themselves need to be found numerically. Recently, the generalized screen propagators

(GSP) method has been developed as a fast computational procedure for modelling of

elastic wave propagation in half spaces with small-scale heterogeneities (Wu et al., 2000).

However, the approach used in the GSP method ignores the backscattering process

and so is not suitable for full representation of scattered waves. In this circumstance,

we develop a wavelet-based method for a stable and accurate computation in general

complex media.

1.3 Development of a wavelet approach for wave propagation

In order to develop a wavelet-based method, some major obstacles need to be solved. The

first is to find how the wave equation can be represented in a discretized time form. The

second is to implement the boundary conditions such as absorbing boundary conditions

and traction-free boundary conditions. The third is a way to consider topography

problems.

For the discretized form, we adapt the approach introduced by Beylkin & Keiser (1997)

for parabolic PDEs to the wave equation system by rewriting the governing equations

in the form of a set of equations involving first-order derivatives in time. This can

be achieved by working in terms of displacements and velocities with a consequent

reduction in memory of about 30% compared to the more common velocity-stress

formulation (e.g., Virieux, 1986; Carcione, 1994; Komatitsch & Vilotte, 1998). The time

evolution of the differential equations is achieved with an explicit scheme, and a local
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Taylor expansion that allows us to make an effective representation of both vector and

matrix operators involving spatial derivatives in terms of scalar wavelet components.

Externally imposed boundary conditions such as the termination of a string or the

free surface boundary condition of vanishing traction for elastic media need to be

incorporated in the wave propagation scheme. We are able to handle such conditions

with the use of equivalent force systems applied at the material boundaries. For the

implementation of absorbing boundary conditions, artificial attenuation is considered at

the boundaries of a domain by including attenuation terms in the governing equations.

Topography problems can be considered using a grid-mapping technique which maps

a rectangular grid system to a curved grid system corresponding to the topography.

1.4 Modelling in complex media and seismic quantitative studies

High-frequency seismic waves propagating in the crust are affected by heterogeneities

and anisotropy, and the seismic attenuation from the scattering and the anelastic energy

dissipation is a well-known feature associated with wave propagation in the earth.

However, it has been often reported that the scattering attenuation is the dominant factor

in seismic attenuation in the crust (e.g., Hatzidimitriou, 1994; Del Pezzo et al., 1995).

Thus, understanding scattering attenuation is a way to comprehend the general seismic

attenuation in the crust.

Numerical modelling allows an investigation of seismic responses under specific

controlled conditions and thus has been widely implemented for scattering studies.

In particular, theoretical scattering attenuation variation can be verified through

comparisons with the numerical results. For this purpose, it is essential that the

numerical technique should generate accurate and stable time responses in complex

media. The correct measurement is particularly required for the determination of the

‘minimum scattering angle’ in the theoretical expressions based on the first-order Born

approximation, which is used for the correction of the travel-time shift in time responses.

Finite difference methods have been popularly implemented for the modelling in

stochastic random media (Frankel & Clayton, 1986; Jannaud et al., 1991; Roth & Korn,

1993; Frenje & Juhlin, 2000), but different scattering attenuation rates are reported with

the variation of the perturbation rate of medium even among studies based on the

finite difference methods. It appears that the finite difference methods can lose energy

artificially when the perturbation rate is large, due to the numerical limitation based on

a grid representation. An accurate and stable numerical technique is required for the

studies, and so the wavelet-based method is introduced.

Although studies on scattering in 3-D spaces are desirable, it is difficult to measure
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energy loss accurately due to the refraction and the wavetype coupling in elastic waves.

But, it has been reported that 2-D and 3-D scattering patterns are quite similar each other

(Frenje & Juhlin, 2000), and also comparisons between numerical and theoretical results

are relatively easy in 2-D problems. There are theoretical attenuation expressions for

2-D or 3-D scalar waves (Frankel & Clayton, 1986; Frenje & Juhlin, 2000) and those for

3-D elastic waves (Sato & Fehler, 1998). For 2-D elastic waves, Fang & Müller (1996)

have introduced a hybrid technique combining the theoretical attenuation expressions

for scalar (Frankel & Clayton, 1987) and acoustic waves (Roth & Korn, 1993). This hybrid

technique is based on the assumption that scattering attenuation of acoustic and elastic

waves are identical, but this assumption appears to be invalid at some cases. Therefore,

an appropriate theoretical attenuation expression needs to formulated for 2-D elastic

waves in order to compare with numerical results and this is presented in Chapter 7.

Scattering attenuation rates of elastic waves have been reported at numerous places

(e.g., Hatzidimitriou, 1994; Del Pezzo et al., 1995), but there are few trials to explain the

results in terms of characteristic stochastic random heterogeneities. Using the theoretical

attenuation expressions, the random heterogeneities at specific region can be resolved.

Limitations in current numerical modelling techniques have lead to the development

of semi-analytic approaches (e.g., boundary integral method) for modelling in random

media composed of heterogeneities with high impedance. Such random media are

considered as an alternative representation for random heterogeneities (Benites et

al., 1992). However, these semi-analytic techniques have difficulty for modelling in

inhomogeneous media (e.g., layered media) or in media with filled cavities due to the

difficulty in the generation of the Green’s function and the specifications of the boundary

conditions. A general modelling technique is required for such complex media and the

wavelet-based method can be applied in many circumstances. For the comparisons with

numerical results, theoretical attenuation expressions are also required to be formulated.

Such comparisons of scattering patterns between stochastic random media and random

cavity media should allow suitable representations for the heterogeneities in the earth.

1.5 The scope of this thesis

The main emphasis of this thesis is placed on the development of a novel wavelet-based

technique for the modelling of wave propagation and the display of the potential of

the new technique by applying it to challenging problems. In particular, tests for

complex media are extensive to ensure if the technique can be applied to more general

complex-structured media.

Chapter 2 describes wavelet techniques used in numerical studies and introduces the
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idea of a wavelet-based method for wave propagation modelling. The basic theories for

the representation of differential operators in wavelet bases and a technique to generate

discrete time solutions for a simple 1-D scalar wave equation are discussed. Through

modelling for this simple problem, we discuss the characteristics of the wavelet-based

method and suggest a way to treat inherently periodic boundary conditions.

In Chapter 3, we extend the wavelet-based method to elastic wave modelling

problems. The formulation of the elastic equation system and treatment of boundary

conditions (absorbing and traction-free) are presented, and the wavelet technique is

tested in simple problems where analytic solutions exist, with comparison of the

numerical results and the analytic solutions. We also consider the numerical aspects

(e.g., stability condition, computation time) of the implementation of the wavelet-based

method.

In Chapter 4, the wavelet-based method is applied to modelling of heterogeneous

media. In order to test the capacity of the method we introduce challenging problems

(e.g., media with fluid-solid configuration, media with a fluid-filled crack, random

heterogeneous media) where other methods encounter difficulty. Further, the technique

is extended to transversely isotropic media.

In Chapter 5, the wavelet-based method is expanded to treat topography problems.

Using a grid-mapping technique, the wavelet method can consider the topographic

variation exactly and this approach is validated by comparisons between numerical

solutions and analytic solutions for simple topography problems. The high stability

of the wavelet method is tested for sinusoidal topography problems with increasing

topography variation.

In Chapter 6, the wavelet-based method is applied to modelling in tectonic regions.

For these applications, the wavelet method is expanded so that it can be implemented

directly with heterogeneous source regions, and this new scheme is validated through

comparisons of time responses. The wavelet-based method allows modelling with

complicated source time function in complex media, including the investigation of

trapped waves in fault gouge zones and wave-guide effects in subduction zones.

High stability and accuracy enables the wavelet-based method to be employed for

quantitative studies of seismic wave propagation. In Chapter 7, we show the use of the

wavelet-based method as a simulator for random heterogeneous media by comparing the

accuracy in differentiation of highly varying signals corresponding to physical properties

of random media and showing the stability in highly perturbed media. Scattering

attenuation rates are estimated from numerical time responses and compared with

theoretical attenuation curves based on the first-order Born approximation, to determine
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minimum scattering angles. Finally, the ratios of scattering attenuation rates for P and

S waves in stochastic random media are computed, and a possible representation for

random heterogeneities in the crust is discussed.

In Chapter 8, we investigate a comparison of the scattering patterns and attenuation

rate variations for acoustic and SH waves in order to resolve effects of physical-parameter

perturbation. Without consideration of the characteristics of elastic waves (e.g., wavetype

coupling at a boundary), we directly compare the acoustic scattering with the SH

scattering.

In Chapter 9, the wavelet-based method is applied to modelling of elastic waves

in media with randomly distributed fluid-filled cavities. The wavelet-based method

generates stable and accurate responses for such random media, which can be considered

as an alternative representation of the random heterogeneities in the earth. Results for the

variation of theoretical attenuation are also formulated and compared with the numerical

results. We discuss the difference in the scattering patterns and attenuation variations

relative to those of the stochastic random media.

Finally, in Chapter 10, we summarise the thesis, and discuss possible future avenues

for research and the prospects for the wavelet-based method.

1.6 Published materials in the thesis

Materials in Chapters 2, 3, 4 and 5 have been published in two articles;

Hong & Kennett (2002), A wavelet-based method for simulation of two-dimensional

elastic wave propagation, Geophys. J. Int., 150, 610-638, and

Hong & Kennett (2002), On a wavelet-based method for the numerical simulation of

wave propagation, J. Comput. Phys., 183, 577-622.

Materials in Chapter 6 will be published in

Hong & Kennett (2003), Modelling of seismic waves in heterogeneous media using a

wavelet-based method: application to fault and subduction zones, Geophys. J. Int., (in

press).

Materials in Chapter 7 have been introduced in two articles;

Hong & Kennett (2003), Scattering attenuation of 2D elastic waves: theory and numerical

modeling using a wavelet-based method, Bull. seism. Soc. Am., 93 (2), 922-938, and

Hong (2003), Scattering attenuation ratios of P and S waves in elastic media, Geophys. J.

Int., (submitted).

Materials in Chapter 9 have been introduced in an articles;

Hong & Kennett (2003), Scattering of elastic waves in media with a random distribution

of fluid-filled cavities: theory and numerical modelling, Geophys. J. Int., (submitted).



2
Extension of wavelets to numerical modelling: theory and

test

2.1 Overview of wavelets

The use of synthetic seismograms is one of the most useful methods for estimating

the seismic response of media at a given receiver. Various numerical approaches have

been proposed to solve the elastic wave equations. For problems related to stratified

media, the reflectivity method (Kennett, 1983) provides a useful mean of modelling the

seismic response out to large distances. By taking a Fourier transform with respect to

time and introducing a composite use of a Hankel transform and Fourier transform to

horizontal components, Kennett (1983) recast the elastic wave equations in terms of a

system of first-order differential equations for the vertical direction and then superposed

the cylindrical waves in stratified media to determine the response at a receiver.

For more complex media, various methods have been introduced. The finite difference

(FD) method (Kelly et al., 1976; Virieux, 1986) is applicable to many problems in simple

media because the FD scheme is relatively easy to implement in computer codes and

does not requires too much computer time and memory. However, the FD scheme

encounters difficulties when it is applied to problems such as laterally heterogeneous

media with irregular nonplanar boundaries or media with free surface topography (e.g.,

Moczo, 1998). Therefore, special care is needed to implement the boundary conditions.

Moczo et al. (1997) combined finite difference and finite element (FE) methods near

the free surface, since it is much easier to satisfy the boundary conditions in the FE

scheme. The pseudospectral method based on Chebyshev expansions can provide higher

accuracy spatial differentiation than simple FD or FE methods by using a series of global,

infinitely differentiable basis functions (Augenbaum, 1992; Kosloff et al. 1990). However,

this style of pseudospectral method suffers from a nonuniform grid spacing for the

collocation points of the basis functions. The nonuniform grid spacing problem requires
10



2.1 Overview of wavelets 11

an increase in the number of grid points to remove grid dispersion and makes it difficult

to handle complicated geometries. Recently the spectral element method (SEM) has been

introduced for various classes of problem (Faccioli et al., 1996; Komatitsch & Vilotte, 1998;

Komatitsch & Tromp, 1999). By including the boundary conditions in a variational form

of the governing equations and using element interaction, Komatitsch & Vilotte (1998)

satisfied the free surface boundary condition directly and so avoided one of the usual

complications in numerical work.

We introduce a wavelet-based method for numerical simulation of elastic wave

propagation. In this method we represent the differential operators via multiscale

wavelets, and can achieve high accuracy in the spatial representation. The scheme

does not require a non-uniform grid as in the Chebyshev implementation of the

pseudospectral method and can be adapted to a wide range of media geometries and

related phenomenon.

2.1.1 Wavelets

After Daubechies (1992) built the foundation of a discrete wavelet transform scheme,

a wide range of numerical methods based on wavelets have been adopted in many

areas. The ability of the wavelet transform to resolve features at various scales has

made wavelet analysis one of most useful techniques in signal processing, despite

its recent development. Anant & Dowla (1997) compared polarization information

across a number of scales in determining P-phase arrival time, and used amplitude

information for the transverse component compared to the radial at different scales in

determining S-phase. Similar research was done by Tibuleac & Herrin (1999) in a study

of Lg-phase arrivals using wavelets. Lilly & Park (1995) used multiwavelets to estimate

the time-varying spectral density matrix for three-component seismic data. Multiwavelet

spectral analysis seeks to minimize the spectral leakage in spectral estimates in a similar

way to multitaper spectrum analysis. Another approach in signal processing using

multiwavelets is to measure the anisotropy in a given area using the relative phase

between components to estimate an average particle motion ellipse for the array (Bear

et al., 1999).

The discrete wavelet transform is based on a multiresolution analysis that decomposes

a signal into components of different scales. Decomposition at a given scale is done by

sampling using a scaling function ���
	�� , and a companion wavelet function ��
	�� . The

remaining part of the signal is decomposed using successively higher scales of the scaling

function. Fig. 2.1 shows one pair of scaling function and wavelets (Daubechies-6 and

Daubechies-20) used in discrete analysis. An example of signal decomposition onto a
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Fig. 2.1. Examples of Daubechies wavelets ������� and its scaling function ������� ; (a) Daubechies-6 wavelets
and (b) Daubechies-20 wavelets.

wavelet basis is presented in Fig. 2.2. The chirp signal is decomposed by projecting on

a set of subspaces ( ��� , ��� ) where ��� represents the projection on the wavelet subspace

with scale � and ��� the scaling subspace which the orthogonal complement of a wavelet

subspace with a scale  .
The wavelet transform is similar to a Fourier transform in the sense that it maps a time

function into a two dimensional function with a scale
�

and a translation ! that can be

compared to frequency " and a time # . When, however, we use the Fourier transform in

the time-frequency analysis of a non-stationary signal in a physical problem, we have two

conflicting requirements. The window width $ must be long enough to give the desired

frequency resolution but must also be short enough so as not to lose the localization

in time. A narrow window gives a good time resolution but poor frequency resolution
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Fig. 2.2. Decomposition of chirp signals using wavelets based on a multiresolution analysis.

because it has an infinite bandwidth. On the other hand, a wide window gives a good

localization in frequency but poor time localization because an impulsive response in

frequency does not decay rapidly in time. The sinusoid, basis functions which are used

in Fourier transform are local in frequency but global in time, and rely on cancellation

to represent discontinuities in time (Chan, 1995). Therefore, sinusoids are not efficient in

representing functions that have compact support in both time and frequency. However,

wavelets are confined in both the frequency and time domains. When we analyze signals

at a frequency %'& by changing the window width, we can keep the the number of cycles of

a basis function constant by using wavelets. The confinement characteristics of wavelets

allow an extension to the field of numerical analysis. As shown in Fig. 2.2 a wavelet

transform needs only a small number of wavelet subspaces to synthesize a chirp signal,

compared to a Fourier transform which would need quite large number of sinusoidal

subspaces (basis functions) for such chirp signals.
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2.1.2 Wavelets and PDEs

The application of wavelets in numerical analysis can be generally divided into three

streams. One is to simplify the governing PDE into a lower order of PDE through

a wavelet transform. Lewalle (1998) applied Hermitian wavelets, the derivatives of a

Gaussian bell-shaped curve, to a diffusion problem through a canonical transformation

and showed a promising development for the numerical prediction of intermittent

and nonhomogeneous phenomena. However, this approach has a limitation in the

sense that all equations of interest can not be treated with a certain kind of wavelets.

Another approach is the composite use of a FD scheme and an interpolating wavelet

transform. Holmström (1999) applied the usual techniques to do all operations in the

physical representation and used interpolating wavelets to construct and update the

representation. With the help of interpolating wavelets, this scheme achieves adaptability

in domains by imposing a threshold on the wavelet coefficients. Moreover, the scheme is

cheap in computation cost compared to other adaptive methods due to the application of

FD technique in obtaining the responses of operators. However, this composite scheme

suffers from defects of the usual FD scheme as well. The alternative approach is to apply

a wavelet transform to the differentiation of a function. A given operator is decomposed

into a wavelet basis and then the action of the operator on a function is computed using

a wavelet basis which includes the operator effects (Beylkin, 1992).

Beylkin (1992) computed the non-standard form (NS-form) of several basic operators

such as derivatives and the Hilbert transform using wavelets. The NS-form of operator

has an advantage compared with the standard form that we can reduce the effort in

applying the operator because NS-form of operator is a banded diagonal matrix. Using

a NS-form of derivative operator and semi-group approach, Beylkin & Keiser (1997)

developed an adaptive pseudo-wavelet method for solving nonlinear parabolic partial

differential equations (PDEs) in one spatial dimension and time.

The adaptive pseudo-wavelet method is based on a semigroup approach, a

well-known analytic tool for expressing the solution of PDEs in terms of nonlinear

integral equations by considering a parabolic PDE as complex of linear and nonlinear

parts. This wavelet approach combines the desirable features of a FD scheme, spectral

methods, and adaptive grid approach. The pseudospectral method is similar to the

pseudo-wavelet method in the sense that the evolution equation is split into linear

and nonlinear parts and the contribution of each part is added later. We note that

a pseudospectral method considers a linear contribution in the Fourier space and a

nonlinear contribution in the physical space. Therefore, multiple transforms between

spaces are needed to cover the full complex contribution.
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We develop a wavelet-based method for wave equations. Using a

displacement-velocity formulation and treating spatial derivatives with linear operators,

the wave equations are rewritten as a system of equations whose evolution is rewritten

as a system of equations whose time dependence is controlled by first-order derivatives.

The linear operators for spatial derivatives are implemented in wavelet bases using

an operator projection technique with the NS-form of wavelet transform. Using a

semigroup approach, the discretized solution in time can be represented in an explicit

recursive form, based on a Taylor expansion of exponential functions of operator

matrices. The boundary conditions are implemented by augmenting the system of

equations with equivalent force terms at the boundaries. The wavelet-based method is

applied to acoustic wave equations with rigid boundary conditions at both ends in 1-D

domain, and the nature of the method is investigated to illustrate the application of the

technique.

2.2 Representation of the differential operators in wavelet bases

We have used a representation of the action of differential operators through a wavelet

basis based on the work of Beylkin (1992), using Daubechies wavelets (Daubechies, 1992).

In this section, we briefly review the ideas for the representation of operators in wavelet

bases in non-standard form (NS-form; Beylkin, 1992) and set out the notation for the

extension of the work. We use the terminology ‘matrix operator’ for the representation

of an operator decomposed using wavelet bases in the form of a matrix, as distinct from

an ‘operator matrix’ (e.g., (3.11)) with an action on a vector in physical space.

In the multiresolution analysis, each scaling subspace ( � ( *),+ ) is contained in spaces

on lower scales such as-/.10�2435353 (76�89(;:<8=(?>�8=(;@�:<8=(;@�6 3535312BA 6 �DC7�FE (2.1)

where
-/.10

is a null space and  represents the scale (order) of space. High-frequency

features can be resolved better at a space with smaller  . The scaling subspace ( � can

be decomposed into higher wavelet and scaling subspaces ( G �FH :IEJ( �FH : ) using tensor

product bases ( � ,  , e.g., Daubechies wavelets, Fig. 2.1) at scale  LKNM , and thereby the

scaling subspace can be decomposed successively up to a null space. Therefore,
A 6 space

can be represented with a direct sum of wavelet subspaces, and any operator defined inA 6 space can be potentially represented via projections of the operator onto subspaces.

Since data (e.g., the displacement field in a domain) have a discrete representation on

a domain, the physical (numerical) space need not be an actual
A 6 space. We set the
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physical space to be (7> , and an operator $ defined in
A 6 space is considered as $ > in the

physical space (7> .
When the operator $ > is considered through its effects on subspaces up to scale O , the

components of the matrix operator in standard wavelet form occur in ‘finger’ bands due

to cross scale projections of an operator among subspaces, even from wavelet subspace

to scalar subspace and vice versa (see, Beylkin, 1992). With this form of matrix operator

with a dense population of components, the computation cost increases dramatically

as the scale O is increased. To reduce this huge computational labour and thereby

increase efficiency, Beylkin (1992) has considered an additional projection on to the set

of subspaces ( G � EJ( � ,  QPRM ETS1E5U5U5UIEVO ). With this further projection the matrix operator

is reformulated as a sparse matrix where the non-zero components form submatrices

arranged diagonally. We describe the details of the procedure for formulating matrix

operators in NS-form in Appendix A.1, and for the application of the matrix operator to

a vector in Appendix A.2.

Since scalar differential operators for one-dimensional spaces (Beylkin, 1992) are

implemented for the representation of vector (multi-spatial) differential operator (e.g.,WYX5W�Z\[]Z
), the vectors where the operator is applied have a directional character. As

shown in Fig. 2.3, by collecting a vector in a given direction (i.e., horizontal direction,^ th row; vertical direction, _ th row) from a target vector field (e.g., displacement field),

we can implement the directionality of the partial differential operators. So, when a

operator
W1X5W�Z

is applied to a displacement field
[

in a two-dimensional space, we apply a

derivative operator to a horizontally sampled displacement vector and then a derivative

operator to a vertically sampled vector from a
W1Z`[

field.

During multi-spatial differentiation through successive directed one-dimensional

differentiation using wavelets, the size of each side ( 	aEcb�EcdeE5U5U5U ) of the domain is assumed

to be same (namely,
. �f	aEcb�EcdeE 35353 � M ) regardless of number of data (i.e., grid points)

employed. Therefore, a scaling process is needed to maintain the integrity of numerical

modelling when there are different physical sizes of the edges of the domain. For

example, when a 2-D spatial domain with size (
. �g	 � M , . �hd � S ) is composed

of ikjml grid points and a cross partial differentiation operator
WeX5W�Z

is implemented for

a displacement field
[

, the vectors need to be multiplied by the relative size coefficientn � (= reference length/ directional length,  *P 	aEcd ) after each directional differentiation

(e.g., n Z PRM , n X PRM/o S ). Note that the actual values of i and l (or, grid spatial stepsp 	 and
p d ) are not significant in this scaling procedure. However, the implementation

of large enough i and l to achieve accurate (or, stable) numerical differentiation of
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Fig. 2.3. Sampling in a displacement field

vectors is an important point to be considered for the modelling of wave propagation

(see, Section 3.9).

2.3 Semigroup approach and discrete time solution

Using a displacement-velocity formulation and considering the time-independent spatial

derivatives as linear operators (e.g., � in (2.8) or ����� in (3.8)) which consist of an operator

matrix (e.g., � in (2.9) or (3.11)), we can rewrite the wave equations as a first-order PDE

system in time. We are then able to adapt the technique of using a semigroup approach

in Beylkin & Keiser (1997) for the solution of the equation system.

Now we consider a discrete time solution of a set of first-order PDEs for evolution of a

system in time using the semigroup approach. First, we consider a system of PDEs with

an unknown ���
�a�J�J� depending on the variables ( �a�J� ), which is composed of a linear part��� and a nonlinear ‘forcing’ term �������e� . Then��� �����������������e�F� (2.2)

with an initial condition,���
�a�c��� �9�\&`�
���F� �y¡=�;¡£¢\¤ (2.3)

Here � is a linear operator, � is a nonlinear operator and �����e� is a nonlinear function of���
�a�J�J� . Using a semigroup approach, the solution of this initial value problem (2.2) can be

represented as the sum of an exponential function of the linear operator and a nonlinear
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integral function in time (see, Belleni-Morante, 1979):¥ �
	aE # � P§¦5¨�© ¥ >��
	�� K ª ¨> ¦\«¬¨ @®°¯ ©�± � � ¥ �
	aE ! �J� p ! U (2.4)

This expression for ¥ �
	aE # � in (2.4) provides a direct dependence on the initial conditions

and provides for the existence and uniqueness of solutions.

When a solution ¥ �
	aE # � in (2.4) is considered at a discrete time in a numerical

computation, the magnitude of the nonlinear integral function in (2.4) is approximated

by an estimate based on an asymptotic analysis using the exact values from the linear

part. The resultant discretization formula is given by (see, Beylkin et al., 1998)¥\² H : P�¦I³´¨�© ¥\² K¶µ/#<·®¸ i ² H : Kº¹ @�:»¼�½ >1¾ ¼ i ² @ ¼À¿ E (2.5)

where the coefficients ¸ and ¾ ¼ are functions of µ/#ÂÁ , ¸ determines the nature of the

scheme (implicit or explicit), ¾ ¼ controls the order of the quadrature approximation, ¥�²
is a function of ¥ �
	aE # � at the discrete times # ² PÃ# > KÅÄ}µ/# , µ/# is a time step and i ² is the

nonlinear part at # ² . For a given Æ in (2.5), the order of accuracy is Æ for an explicit scheme

and Æ K7M for an implicit scheme. Since the terms considered at the positions for nonlinear

forcing terms in this study (i.e., body force terms and explicit boundary conditions) are

independent of unknown variables at previous discrete times, we set Æ PÇM and consider

an explicit scheme ( ¸ÈP . ) throughout the study.

The operator exponential ¦ ³´¨�© in (2.5) can be represented directly by the scheme in

Appendix A.1 for 1-D situation with one scalar unknown. When a vector unknown is

implemented (e.g., É in (2.21), (3.10)) through a first-order PDE system for acoustic or

elastic wave equations, the exponential is a function of an operator matrix
A

and can be

represented properly using the scalar wavelet basis by augmenting a Taylor expansion.

In acoustic and elastic wave situations we treat the physical boundary conditions by

introducing equivalent forces which are not continuous in
A 6 , due to the spatially

localized nature of boundaries on the domain. We introduce both source terms (e.g., body

forces) and the equivalent boundary terms by using suitable ‘forcing’ terms in (2.2). This

enables the discrete time solution (2.5) to be used for wave propagation. When various

boundary conditions and nonlinear effects are considered at every time step in a domain,

the implementation via a set of forcing terms can increase the efficiency of computation

and can reduce the numerical instability (e.g., Beylkin et al., 1998).

We discuss detailed schemes for the acoustic and elastic wave equations in Sections

2.4.1 and 3.2.2. Also note that we consider relationships between the truncation order

(i.e., the maximum order of term considered) in the Taylor expansion and the discrete

time step in Section 3.9.
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2.4 Acoustic wave equation

2.4.1 Numerical formulation

First, we consider an acoustic wave equation in one space dimension without any forcing

term: for a uniform mediumW 6 [W # 6 P�Ê 6 W 6 [W 	 6 E (2.6)

with initial conditions[ �
	aE . � P [ >��
	��FE Ë��
	aE . � P ËÌ>`�
	��FE (2.7)

where Ê is a wave velocity in a space.
[ �
	aE # � and Ë��
	aE # � are the components of the

displacement and velocity at a point 	 and time # .
In order to apply the semigroup approach to the wave equation, we rewrite (2.6) as a

first-order differential equation system in timeWW # · [ Ë ¿ PR· . ÍÁ . ¿ · [ Ë ¿ E (2.8)

where the linear operator Á is Ê 6 W 6Z . We set the operator matrix
A

to beA P · . ÍÁ . ¿ U (2.9)

Then through a semigroup approach, we can represent a solution of (2.6) as

· [ ² H :Ë ² H : ¿ P�¦I³´¨�ÎQ· [ ²Ë ² ¿ E (2.10)

where
[ ² is a displacement component at discretized time # ² and Ë ² a velocity

component. ¦ ³´¨�Î is approximated using a Taylor expansion:¦I³´¨�Î,P�Ï K¶µ/# A K µ/# 6S1Ð A 6 K µ/#´ÑÒ Ð A Ñ K µ/#ÔÓÕ Ð A Ó K 35353 E (2.11)

where Ï is a 2 j 2 unit matrix.
A ²

with an odd index Ä can be found fromA 6 � @�: P�Á � @�: A E  LPÇM ETS1E5U5U5U°E (2.12)

and
A ²

with an even index Ä isA 6 � P�Á � Ï E  yPÇM ETS1E5U5U5U°U (2.13)

From (2.10) and (2.11), we can represent the discrete time solutions of (2.6) with a given

accuracy in a recursive manner as

· [ ² H :Ë ² H : ¿ PR· Í K¶µ/# 6 Á�o S µ/#}K¶µ/#´Ñ5Á�o×Öµ/#ÂÁ�K¶µ/#´Ñ5Á 6 o×Ö Í K¶µ/# 6 Á�o S ¿ · [ ²Ë ² ¿ K=Ø � µ/# Ó �FE (2.14)
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or

· [ ² H :Ë ² H : ¿ PR· Í K¶µ/# 6 Á�o S µ/#µ/#ÂÁ Í K¶µ/# 6 Á�o S ¿ · [ ²Ë ² ¿ K=Ø � µ/# Ñ �FU (2.15)

The operator matrix
A

in a system of first-order differential equations (2.8) can be

represented by eigenvalues ( Ù � ) and eigenvectors ( b � )A b �ÀP Ù � b � E  LPÇM ETS1U (2.16)

The eigenvalues Ù � ( yPÇM ETS ) of the matrix
A

are given byÙ�: P�Ê W�Z E Ù®6 PNÚÀÊ W�Z E (2.17)

where Ê is the wave speed.

The stability and stiffness of the equation system (2.8) are related to the eigenvalues Ù �
( mPÃM ETS ) of the operator matrix

A
. For stability, Ù � � M . Note that a system of first-order

differential equations is stiff if at least one eigenvalue has a large negative real part, which

causes the corresponding component of the solution to vary rapidly compared to the

typical scale of variation displayed by the rest of the solution (see, Hoffman, 1992). The

stiffness ratio Æ�Û of an operator matrix
A

is given byÆÜÛ P l � 	'ÝÞÙ � Ýl �ÔÄ ÝÞÙ � Ý P Ý Ê W�Z ÝÝ ÚßÊ W�Z Ý PÇM E (2.18)

where  LPàM ETS . As the stiffness ratio is equal to 1, this system of coupled linear differential

equations is not stiff. But for numerical stability during modelling, the time step size µ/#
must satisfy the condition (see, Ferziger, 1981)µ/# � á*âl � 	'ÝÞÙ � Ý P á*âÊ Ý W�Z Ý E (2.19)

where á*â is a constant dependent on the method chosen. Since the operator
W]Z

is

represented in the form of a matrix (i.e., a matrix operator) in the physical domain, Ý WeZ Ý
corresponds to the determinant of the matrix operator. The magnitude of the determinant

becomes larger as the grid step ( µ 	 ) becomes smaller. In other words, the more samples

in space are used in the analysis, the smaller time step µ/# is required.

2.4.2 Application of the numerical method

In this section, we consider a boundary value problem for acoustic waves. Such boundary

value problems are commonly met in natural problems and only a few cases can be

solved analytically. We consider a string which is constrained at both ends with specified

initial conditions. In this case the pulse propagates backward with a reversed phase when
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it meets an end of the string. The boundary conditions are given by[ �
	�Û°E # � P . E [ �
	®ãÌE # � P . U (2.20)

where 	�Û is set to be 0 and 	�ã be 1. We apply a discrete scheme to the governing equations,

implementing (2.14) with fourth order accuracy. The boundary conditions at both ends

of the string are considered through several different approaches. Then we compare

the performance of the schemes by the level of agreement of the results with analytic

solutions, expressed using a Fourier basis (see, Powers, 1972).

We introduce three different ways to implement the boundary conditions; direct

application to a grid point, direct application on a band of grid points, and via equivalent

forces. In principle, one can satisfy the boundary conditions at both end of string by

considering those at just one end since the wavelet-based method inherently incorporates

a periodic boundary condition. To implement the boundary conditions via additional

equivalent force terms in a semigroup approach, we rewrite the governing equations asW ¨ É P A É Kåä E (2.21)

where É is a vector unknown composed of the displacement and velocity (
[ EcË ), A is the

operator matrix given in (2.9), and the vector for the equivalent force terms ä is

äæPfç ²×è» � ½ : µ �
	 Ú 	 � �/é 3 · Ú ËÚÀÁ [ ¿ E (2.22)

where Ä�ê is the number of grid points over which the boundary conditions are to be

applied and 	 � the corresponding positions. Using the semigroup approach, the general

solution Éß�
	aE # � of the first-order PDE system (2.21) is given byÉß�
	aE # � P�¦5¨�Î Éß�
	aE . � K ª ¨> ¦IÎ�«¬¨ @®°¯ ä �
	aE ! � p ! E (2.23)

where Éß�
	aE . � is an initial condition. Therefore, following (2.5), we can obtain the discrete

time solution for the general solution (2.23) asÉ ² H : P§¦I³´¨�Î É ² K¶µ/# �
ë ä ² H : Kíì > ä ² ��E (2.24)

where É ² is a vector unknown and ä ² is a vector for equivalent force terms at a

discretized time # ² . When ë P .
(explicit case), ì > is determined as � ¦ ³´¨�Î ÚÅÏ �î� µ/# A � @�:

and this can be approximated by the Taylor expansion:ì > P�ÏïK MS µ/# A K MÖ µ/# 6 A 6 K MS Õ µ/# Ñ A Ñ K 35353 U (2.25)

The resultant form for ì > is:

ì > PÇÚ=ç ²×è» � ½ : µ �
	 Ú 	 � �/é 3 · Ë K¶µ/#YÁ [ o S K¶µ/# 6 Á Ë o×ÖÀK¶µ/#´Ñ5Á 6 [ o S ÕÁ [ K¶µ/#YÁ Ë o S K¶µ/# 6 Á 6 [ o×ÖðK¶µ/#´Ñ}Á 6 Ë o S Õ ¿ U (2.26)
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Fig. 2.4. Initial conditions for the displacement component, ñ�òVó�ô�õ and the velocity component, öîòVó�ô�õ for the
numerical modelling of acoustic wave propagation in a 1-D space.

2.4.3 Acoustic wave propagation

We consider acoustic wave propagation in one space dimension using the scheme

developed in Sections 2.4.1 and 2.4.2.

The domain is split into 128 grid points and the both ends of domain are considered as

rigid boundaries. As a solution of the wave equation (2.6) takes the form ÷�ø
ùÈú¶ûVüJý , we

set the initial conditions as÷�ø
ùmúßûVüJý þ�ÿ�� ��������� � �
	 � ���� ����� ��� ù���� � (2.27)

and then initial conditions � � ø
ù�ý and � � ø
ù�ý are ÷�ø
ù,ú=ûVüJý and úÀûI÷�� ø
ùÈú¶ûVüJý at ü�þ �
(Fig.

2.4). In this application we set the wavespeed û to be 0.302.

We attempt to satisfy the rigid boundary condition at both ends using three different

approaches and compare the results with analytic solutions. The first approach is to set

displacement and velocity at one end of string to be zero (namely, ��ø �/ý þ!��ø �/ý;þ �
)

directly in the computation procedure. The second is to introduce the artificial extension

of the boundaries of the domain (i.e.,
�"� ù#� ��$&%�' ) where %(' is a band width

corresponding to a rigid strip, and then displacement and velocity in these regions are

set to be null (i.e., ��ø
ù*)/ýïþ+��ø
ù,)/ý�þ �
, - þ+. � ./$0� �2121213�54 where ù6�þ7� , ù8�þ7�9$:%(' ). The

third is to implement equivalent force terms (2.22) explicitly at the artificial boundary

region while applying a semigroup approach.

The analytic solutions ��ø
ù � üJý (
� � ù;�7< ) of boundary value problem can be obtained

using Fourier series as��ø
ù � üJývþ =>6�?A@CB5D�EGF 6�ùIH�øKJL6NM2O BF 6�ûVüP$Q%(6 B5D�EGF 6�ûVüJý � (2.28)

where JL6 and %(6 are determined by the initial values of the displacement and velocity
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components (
[ >��
	�� , ËÌ>��
	�� ):� ² P S R ª;S> [ >`�
	��CT5U�VXW ÄZY 	R\[ p 	aE] ² P SÄZY}Ê ª;S> ËÌ>`�
	��CT5U�VXW ÄZY 	R\[ p 	aU (2.29)R

is the length of the domain and Ù ² P�ÄZY�o R . In this case,
R

is 1.

Fig. 2.5 shows comparisons between the numerical results and analytic solutions at

times #;P M E Ö ETS_^ s. When the boundary condition is considered at just a single grid

point of the string, the energy in the waves leaks and the amplitude of reflected main

phase is gradually reduced, while the spurious waves from energy leakage become larger

as the number of reflections from the boundaries increases. Physically, the modelled

string corresponds to successive strings having their own initial conditions, which are

connected at the constraint points in a chain due to inherent periodic boundary condition

of the wavelet method. Therefore, this point-wise constraint can not represent properly

the physical rigid boundary. The use of a rigid strip (5 grid points in this study) in

the other two cases, can reproduce the physical boundary effects well by isolating the

system satisfactorily and exhibits a good agreement with the analytic solution. The

technique using equivalent forces for the treatment of the boundary conditions not only

produces accurate numerical results, but also fits directly into the semigroup scheme

with consequent gains in the simplicity of the code by division into a main procedure

and force effects. Therefore, the technique can be used efficiently for problems with

complex boundary conditions to be implemented during main computational procedure.

We implement this technique using equivalent forces in elastic wave problems to treat

traction-free boundary conditions on a free surface.

2.5 Discussion

We have introduced a wavelet-based method for the 1-D homogeneous acoustic wave

equation in order to quantify its own characteristics before extension to elastic wave

equations.

Through a displacement-velocity formulation, the wave equation is recast as a

first-order partial difference equation system in time, and spatial derivatives are treated

as linear operators. Discrete time representations are obtained from a semigroup

approach applied to a system of first-order partial differential equations in time. The

numerical solution uses a recursive explicit scheme, derived from a Taylor expansion for

the exponential of matrix operator.

Explicit boundary conditions (e.g., rigid boundary conditions) were implemented
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Fig. 2.5. Comparison among various numerical results with analytic solutions for the acoustic wave propa-
gation in a 1-D space.
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through equivalent force terms. As periodic boundary conditions are introduced

intrinsically at the artificial boundaries in the wavelet-based method, we had to find ways

to implement physical boundary conditions without producing spurious effects. When

rigid boundary conditions are considered at both ends of the 1-D spatial domain, we

need to apply the boundary conditions over an artificial extension of the medium with a

band of grid points, considering both wave length and wave speed, to achieve sufficient

accuracy. With a proper treatment of the boundary conditions, numerical results exhibit

good matches to the analytic solutions.



3
A wavelet-based method for modelling of elastic wave

propagation

3.1 Introduction

The wavelet-based technique developed for 1-D scalar waves in Chapter 2 is extended to

2-D elastic wave equations. We rewrite the governing equations as a system of first-order

PDEs using a displacement-velocity formulation. With this transformation, we can treat

elastic wave equations as a simple system of PDEs using wavelets. Also, the system

of PDE using displacement-velocity formulation occupies much less memory during

computation than using a velocity-stress formulation.

The implementation of the traction-free boundary condition at a free surface is one of

the important issues in the numerical modelling of elastic wave propagation. One of the

reasons for using a velocity-stress formulation in most numerical methods comes from

the direct relation to the boundary condition.

Generally, three major approaches have been applied to express the presence of

a free-surface. One way is to implement stress-free boundary condition at the free

surface and satisfy the condition explicitly. Gottlieb et al. (1982) showed how to

use one-dimensional characteristic variables to enhance the stability of the boundary

treatment and Kosloff et al. (1990) and Bayliss et al. (1986) implemented a traction-free

condition by maintaining the magnitude of the outgoing characteristic variables at the

boundary. Although this scheme was introduced first by Bayliss et al. (1986) for a

finite difference method, this approach has proved popular for pseudospectral methods

(Carcione, 1994; Tessmer & Kosloff, 1994).

Another approach is to modify the physical parameters (a ‘vacuum formalism’) and

set the elastic wave velocities ` , ¾ to zero with the density a close to zero above the free

surface (Graves, 1996). Since, however, a small value of density above a free surface

is considered, the time responses often show grid dispersion at the free surface or the
26
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Rayleigh waves exhibit rather low frequency content due to progressive energy leakage

of incident waves into the vacuum layer. To cure this phenomenon, some researchers

have introduced a special treatment for the differentiation of the normal stress term at

the free surface (Ohminato & Chouet, 1997; Zahradnik, 1995; Moczo et al., 1997).

An alternative is to use an integrated form of the elastodynamic equations namely

a ‘weak (or, variational) form’. Faccioli et al. (1996) and Komatitsch & Tromp (1999)

considered a composite form of equations that includes the governing equation and the

boundary conditions at the same time by taking the dot product of each term with an

arbitrary test function. The ‘weak form’ approach has advantages that one can consider

the effects at the boundaries implicitly, and can overcome the drawbacks in handling

nonperiodic boundary conditions when using a Fourier method.

We develop a scheme to express a traction-free condition using displacement variables,

not the composite use of velocity and stress variables as in the stress-velocity formulation.

Also, the condition is implemented in the system of governing equations as an equivalent

force term via a semigroup approach.

We validate the scheme by comparing numerical results with analytic solutions in

several simple models, and describe numerical aspects of the wavelet method.

3.2 Formulation of equations

3.2.1 SH waves

When the velocity and density are functions of 	 and d , the SH wave displacement,
[Zb

satisfies the scalar wave equation:a W 6 [�bW # 6 P WW 	dc�e W�[�bW 	gf K WW d:c�e W�[�bW dhf K � b E (3.1)

where a��
	aEcdY� is the density, e �
	aEcdY� is the shear modulus and
� b �
	aEcdY� is the body force at

a point �
	aEcdY� . We can simplify and rewrite the governing equation (3.1) by introducing a

linear operator Á b
asW 6 [�bW # 6 P�Á b/[�b K � ba E (3.2)

whereÁ b P Ma WW 	 ce WW 	 f K Ma WW d c�e WW d f U (3.3)

To apply the semigroup approach to a SH wave equation, we rewrite (3.2) using a

relationship between displacement (
[ib

) and velocity ( Ë b ) of the SH wave as a first-order
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PDE system:W�[�bW # P Ë b EW Ë bW # P�Á b/[�b K � ba U (3.4)

We consider the variables,
[b

and Ë b as components of a vector variable É and the

nonlinear term
� b o a as a component of a force vector j . The other component in j is

set to zero following (3.4). The linear operator matrix
A

consists of a linear operator Á b
,

the identity term
Í

and zeros.

For stability of the numerical computation around the source, we divide the medium

into a source region and the remaining main region. We assume that the source region is

a homogeneous and elastic medium. As a force vector j is considered only in the source

region, the procedures for applying the semigroup approach are different for the two

regions and will be discussed in following sections.

3.2.2 P-SV waves

We consider the elastic wave equations for two space dimensions, which include body

force terms and boundary conditions with compounds of spatial derivative terms. The

partial differential equations describing P-SV wave propagation in 2-D media are given

by W 6 []ZW # 6 P Ma c Wlk]Z5ZW 	 K Wlk]Z°XW d K � Z f EW 6 [®XW # 6 P Mamc Wlk]Z°XW 	 K Wlk®XJXW d K � X f E (3.5)

where � []Z E [®X � is the displacement vector and � k®Z5Z E k]Z°X E k®XJX � are elements of the stress

tensor. The stress components
k®Z5Z

,
k]Z°X

,
k®XJX

are expressed using compounds of spatial

derivatives of displacement components ask]Z5Z P � Ù K S e � W�[]ZW 	 K Ù W�[®XW d Ek®XJX P Ù W�[]ZW 	 K � Ù K S e � W�[®XW d E (3.6)k]Z°X P enc W�[]ZW d K W�[®XW 	 f E
where Ù��
	aEcdY� and e �
	aEcdY� are the Lamè coefficients.

The right-hand sides of equation (3.5) can be simplified by introducing linear operatorsÁ � � ( � E  ¶P 	aEcd ) whose effects can be estimated in physical space by the representation

of the operators on wavelet bases. The elastic wave equations in (3.5) are recast as
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second-order differential equations in time:W 6 []ZW # 6 P�Á Z5Z\[]Z KåÁ Z°X5[®X K � Za EW 6 [®XW # 6 P�Á XÂZ�[]Z KåÁ XJXI[®X K � Xa E (3.7)

where the linear operators Áv� � ( � E  yP 	aEcd ) are:

Á Z5Z P Ma WW 	�o � Ù K S e � WW 	qp K Ma WW dro e WW dlp EÁ Z°X P Ma WW 	�o Ù WW dlp K Ma WW d;o e WW 	qp EÁ XÂZ P Ma WW 	 o e WW d p K Ma WW d o Ù WW 	 p E (3.8)

Á XJX P Ma WW 	so e WW 	qp K Ma WW d;o � Ù K S e � WW dlp U
To apply the semigroup approach to the elastic wave equations and thereby obtain the

discrete time solutions, we rewrite (3.7) as a system of first-order differential equations

by introducing additional unknowns for the velocity components. The resultant system

of first-order PDEs for the displacement-velocity formulation is:W�[]ZW # P Ë Z EW Ë ZW # P�Á Z5Z`[]Z KåÁ Z°X5[®X K � Za EW�[®XW # P Ë X E (3.9)W Ë XW # P�Á XÂZ�[]Z KåÁ XJXI[®X K � Xa E
where Ë � ( �P 	aEcd ) is the velocity component in  direction. Following the acoustic wave

case, the system of equations in (3.9) can be written as a first-order differential equation

with a vector unknown É :W ¨ É P A É K j�E (3.10)

where É is � []Z EcË Z E [®X EcË X �ut and j is composed of directional forces as � . E � Z o a®E . E � X o a1�ut .
The operator matrix

A
is given by

A P
vwwwwx . Í . .Á Z5Z . Á Z°X .. . . ÍÁ XÂZ . Á XJX .

y2zzzz{ U (3.11)
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3.3 Implementation technique

3.3.1 Source region

If we use the heterogeneous-media scheme for wavelets directly in the source region,

we often have unstable results due to the multiple differentiation of the delta function

representing a point (or, line) source. Therefore, we assume that the source region is

homogeneous and apply a homogeneous-medium scheme around the source region. In

this case, the linear operators Á�� � ( � E  yP 	aEcd ) in (3.8) can be rewritten by

Á}|Z5Z P Ù K S ea W 6W 	 6 K e a W 6W d 6 EÁ}|Z°X P�Á}|XÂZP Ù K e a W 6W 	 W d E (3.12)

Á}|XJX P e a W 6W 	 6 K Ù K S ea W 6W d 6 E
and Á b

in (3.3) is simplified to

Á}|b P e a W 6W 	 6 K e a W 6W d 6 U (3.13)

The superscript ~ is added to the linear operators for the homogeneous case to

distinguish them from the more general ones. Equations (3.4) and (3.9) can be expressed

in first order differential equation form asW ¨ É P A | É K j�E (3.14)

where
A | is the matrix operator for a homogeneous medium and j is a force term vector.

For the SH wave case, É ,
A | , j are given by

É P · [�bË b ¿ E A | P · . ÍÁ |b . ¿ E j P Ma · .� b ¿ E (3.15)

and for the P-SV wave case,

É P
vwwwwx []ZË Z[®XË X

y2zzzz{ E A | P
vwwwwx . Í . .Á |Z5Z . Á |Z°X .. . . ÍÁ |XÂZ . Á |XJX .

y2zzzz{ E j P Ma
vwwwwx .� Z.� X

y2zzzz{ E (3.16)

where �DË Z EcË X � is a velocity vector. Following the scheme in Section 2.3, we can write an

explicit discrete time solution asÉ ² H : P§¦I³´¨�Î�� É ² K=µ/#Ôì > j ² E (3.17)
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where j ² is a force vector at a discretized time # ² and ì > is given by � ¦ ³´¨�Î�� Ú Ï �î� µ/# A | � @�:
(see Beylkin et al., 1998). ¦ ³´¨�Î�� and ì > can be approximated by a Taylor expansion:¦I³´¨�Î���P�Ï K¶µ/# A | K MS µ/# 6 A 6| K MÖ µ/# Ñ A Ñ | K 35353 Eì > P�ÏïK MS µ/# A | K MÖ µ/# 6 A 6| K MS Õ µ/# Ñ A Ñ | K 35353 U (3.18)

3.3.2 The main region

We can simulate the remainder of the medium by considering the responses at the source

region via boundary conditions. As the body force only needs to be considered in the

source region and its effect is transmitted to the main region via boundary conditions,

we can omit the source term
� � ( �LP 	aEcb�Ecd ) in the governing equations (3.1) and (3.5).

Therefore, the first order differential equation system can be rewritten asW ¨ É P A É�E (3.19)

where
A

is a 4-by-4 matrix operator in a P-SV wave problem and is 2-by-2 for a SH wave.

The linear operators Á b
, Á � � ( � E  yP 	aEcd ), the components of

A
, are given in (3.3) and (3.8).

Using a semigroup approach and the discrete representation (2.5), equation (3.19) can be

discretized asÉ ² H : P§¦I³´¨�Î É ² E (3.20)

where ¦ ³´¨�Î is evaluated using a Taylor expansion in (3.18).

3.4 Treatment of boundary conditions

One of difficulties in the numerical simulation of elastic wave propagation is the

treatment of the boundary conditions. Two kinds of boundary conditions are

usually needed: absorbing boundary conditions and traction-free boundary conditions.

Absorbing boundary conditions are introduced to treat the artificial boundaries which

are generated due to the confinement (artificial bounds) of the numerical domain.

Traction-free boundary conditions are implemented to consider the effect of a free

surface. We consider the absorbing boundary conditions intrinsically in a equation

system by introducing a new operator matrix including attenuation factors, and the

traction-free boundary conditions are implemented via equivalent force terms.

3.4.1 Absorbing boundary conditions

In numerical modelling, the occurrence of artificial boundaries is an inevitable limitation.

We note that many numerical studies based on wavelets have considered special cases
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when periodic boundary conditions are applied at those artificial boundaries (e.g.,

Beylkin & Keiser, 1997). However, for studies of physical transient phenomenon,

especially modelling of elastic wave propagation, it is important to design good

absorbing boundaries to reduce spurious phenomena. Historically, many studies have

concentrated both theoretically and technically on the development of satisfactory

absorbing boundary conditions (e.g., Zhang & Ballmann, 1997; Dai et al., 1994; Kosloff

& Kosloff, 1986; Sochacki et al., 1987; Shin, 1995; Givoli, 1991; Clayton & Engquist, 1977).

However, the explicit implementation of absorbing boundary conditions can sometimes

evoke an instability in modelling and result in numerical dispersion (see, Mahrer, 1990)

and the absorption rate of waves can be dependent on the incident angle of waves to

a boundary (see, Clayton & Engquist, 1977). Moreover, the explicit implementation of

absorbing boundary conditions needs additional numerical work on the boundaries with

a consequent time cost.

To treat absorbing boundaries in a consistent way, we consider the boundary

conditions in the equation system implicitly, by including additional attenuation terms

which force the energy of incoming waves to be dissipated during propagation in the

absorbing regions (see, Kosloff & Kosloff, 1986, Sochacki et al., 1987). For this purpose,

we make attenuation active around the artificial boundaries by assigning non-zero

attenuation terms around the boundaries and zero in the main computational domain.

The attenuation terms are designed to be bounded, twice differentiable (see, spatial

operators Áv� � ) and to have a sufficiently smooth derivative in order to make amplitudes of

waves incident on the boundaries reduce gradually and continuously without generation

of spurious waves reflected from the attenuation gradients (see, Sochacki et al., 1987).

When we introduce attenuation factors ( � Z E � X ) into the P-SV wave equations, we add

an extra first-order time derivative term (e.g., S � Z\W ¨ []Z ) in governing equation system

(3.5) (cf., Sochacki et al., 1987). The governing equation system with attenuation terms

can be then written asW 6 []ZW # 6 K S � Z W�[]ZW # P Ma c Wlk]Z5ZW 	 K Wlk]Z°XW d f EW 6 [®XW # 6 K S � X W�[®XW # P Mamc Wlk]Z°XW 	 K Wlk®XJXW d�f U (3.21)

In this case, the operator matrix
A��

becomes:

A}� P vwwwwx . Í . .Á Z5Z Ú S � Z Á Z°X .. . . ÍÁ XÂZ . Á XJX Ú S � X
y2zzzz{ U (3.22)
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In the same way, the SH wave equation with � b �
	aEcdY� is,W 6 [�bW # 6 K S � b W�[�bW # P Ma WW 	 ce W�[�bW 	 f K Ma WW d c�e W�[�bW d f E (3.23)

and
A}�

is given asA}� P · . ÍÁ b Ú S � b ¿ U (3.24)

Evaluating ¦ ³´¨�Î�� by a Taylor expansion, we discretize the first-order differential

equation system and the discretized solution of (3.21) is given byÉ ² H : P É ² K¶µ/# A}� É ² K MS µ/# 6 A 6� É ² K 35353 K M� Ð µ/# ¼ A ¼� É ² K9Ø � µ/# ¼ H : �FU (3.25)

The relationship between the time step ( µ/# ) and a truncation order ( � ) implemented

in discrete time solution (3.25) is considered in Section 3.9, and the parameters for

attenuation terms are considered in Section 3.5. Quantitative analysis of spurious waves

generation from artificial boundaries in the implementation of these absorbing boundary

conditions, is described in Section 3.6.

3.4.2 Traction-free boundary conditions

Following the explicit implementation procedure for the boundary conditions as in

acoustic wave problems, the traction-free boundary conditions are considered via

introduction of equivalent force terms.

For a flat free surface normal to the d -axis the traction-free boundary condition in two

space dimensions requires the vanishing of both normal and tangential tractions at the

free surface ( d P . ):� k � X
��X ½ > P . E ��P 	aEcdeU (3.26)

Since the explicit form of condition is given to ‘only’ traction terms (
k�Z°X E k®XJX ), the other

variables (e.g.,
keZ5Z

) on the boundary need to be updated at each discrete time considering

the variation of the tractions (cf., Gottlieb et al., 1982; Thompson, 1990). For this

purpose, finite difference methods assign values to displacement terms in an artificially

extended region above the free surface boundary so that tractions on the boundary can

be forced to vanish. In addition, the procedure for numerical differentiation is modified

at the free surface to make the other variables balanced during implementation of the

boundary conditions (Graves, 1996; Ohminato & Chouet, 1997; Zahradnik, 1995). An

alternative technique uses a one-dimensional analysis scheme based on characteristic

variables, and sets the outgoing characteristic variables equal to those expected from the

numerical scheme when the traction-free condition is satisfied. This approach has been
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implemented in Chebyshev-pseudospectral methods (e.g., Kosloff et al., 1990; Tessmer et

al., 1992; Carcione, 1994) and in the finite difference method (e.g., Bayliss et al., 1986).

3.4.2.1 P-SV waves

With the introduction of the displacement-velocity formulation, which does not assign

stress terms as variables explicitly during the computation, we can implement the

free surface effects through consideration of the stress variations on the boundary via

equivalent forces. The tractions are forced to zero, but we also need to determine the

behaviour of
keZ5Z

. Since there is a displacement discontinuity at the free surface, the

vertical spatial differentiation in
k®Z5Z

(i.e.,
WYX5[®X

) is replaced through use of the boundary

condition,
k�XJX P .

. Thus using the expression for
k�XJX P .

, the vertical derivative term

can be represented by a horizontal derivative term at the free surface:W�[®XW d PÇÚ ÙÙ K S e W�[]ZW 	 U (3.27)

From (3.27),
keZ5Z

at the free surface can be expressed ask]Z5Z Ý X ½ > P Õ e � Ù K e �� Ù K S e � W�[]ZW 	 U (3.28)

Note that the expression (3.28) is the same as that produced by the one-dimensional

analysis technique (see, Carcione, 1994). Now, the governing equations including both

absorbing and traction-free boundary conditions can be written asW 6 []ZW # 6 PNÚ S � Z W�[]ZW # K Ma�� WW 	m� k]Z5Z Ú k��Z5Z K k��Z5Z�� K WW d�� k]Z°X Ú k��Z°X2� K � ZZ� EW 6 [®XW # 6 PNÚ S � X W�[®XW # K Ma�� WW 	 � k]Z°X Ú k��Z°X � K WW d � k®XJX Ú k��XJX � K � XC� E (3.29)

where,k��� � P�µ �DdY� k � � E � E  LP 	aEcdeEk��Z5Z P�µ �DdY� � Õ e � Ù K e �� Ù K S e � W�[]ZW 	 � U (3.30)

The equivalent force terms for traction-free conditions can be considered via forcing

terms, and thereby the equation system with a displacement-velocity formulation can

be expressed byW ¨ É P A}� É Kåä E (3.31)

where ä is a vector for body forces and equivalent force terms expressing traction-free

boundary conditions and the operator matrix
A��

includes the absorbing boundary

conditions. The vector ä is composed of four equivalent force terms (± �DË � �FE ± � [ � � ,



3.5 Sources and initial conditions 35 LP 	aEcd ):± � []Z � P ± � [®X � P . E± �DË Z � P Ma�� � Z Ú Wlk �Z5ZW 	 Ú Wlk �Z°XW d K Wlk �Z5ZW 	 � E (3.32)

± �DË X � P Ma�� � X Ú Wlk �Z°XW 	 Ú Wlk �XJXW d � U
In a similar approach for the implementation of boundary conditions to that employed in

the acoustic wave problems in Section 2.4.3, we introduce a zero-velocity artificial layer

( Ù P e P .
) above the free surface. This has the effect of confining the elastic wave in

the domain to which equivalent forces are applied on the boundary, and significantly

improves the accuracy.

Finally, considering (2.11) and (3.25), we can express the discrete time solution for the

elastic wave equation including implicitly absorbing and traction-free conditions asÉ ² H : P É ² K¶µ/# A}� É ² K µ/# 6S A 6� É ² K 35353 K µ/# ¼� Ð A ¼� É ²K�µ/#Yä ² K µ/# 6S A}� ä ² K µ/# ÑÖ A 6� ä ² K 35353 K µ/# ¼ H :� � K�M �FÐ A ¼� ä ² E (3.33)

where É ² is a variable vector at discrete time # ² and ä ² is a vector for forcing terms.

3.4.2.2 SH waves

Since we set SH waves to be polarized along the b -axis in a cartesian coordinate,
[�Z P[®X P . . Therefore,

keZ°X P k®XJX P . by definition and only
kbVX

has to satisfy the condition at

the free surface. Since
kbVX

vanishes at a free surface, we can include this condition in the

governing equation system by writingWW # · [�bË b ¿ P · . ÍÁ b . ¿ · [�bË b ¿ K Ma · .� b Ú WYX � k �bVX � ¿ E (3.34)

where µ �DdY� is a Dirac delta and
k �bVX

is a free-surface tangential stress vector which is set to

be zero except at the free surface:k��bVX P�µ �DdY� ce W�[�bW d f U (3.35)

The remaining procedure follows the scheme described in the previous section.

3.5 Sources and initial conditions

The sources are either a compressional line force or a vertically directed line force with a

source time function ~a� # � given by~a� # � P�� Û/� #�ÚQ# >/� ¦ @� «¬¨ @ ¨�� ¯�� E (3.36)
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t (s)

Source time function h(t)

Fig. 3.1. Source time function � ��� � for the numerical modelling of elastic wave propagation.

where � Û is a constant value, # > is time shift and � controls the wavelength content of the

excitation. We set # > P . U�S seconds and � P S .`. (Fig. 3.1). The initial condition is that the

material is undistorted and at rest at time #ïP . .
3.6 Test of absorbing boundary conditions

To test the efficiency of the attenuation terms in (3.21) for the waves approaching the

artificial boundaries, we check the absorption of the displacement fields at the artificial

boundaries in a 2-D homogeneous medium (Fig. 3.2) with compressional velocity 3.15

km/s, shear velocity 1.8 km/s and density 2.2 � o���� Ñ .
The attenuation factors ( � Z & � X for P-SV wave case, � b

for SH wave case)

are designed following conditions suggested by Sochachi et al. (1987) so that these

attenuation factors are bounded, twice continuously differentiable and their derivatives

are sufficiently smooth on a domain. In this study, we distribute attenuation factors on a

domain by�À� � � Z E � X � P+� Z � ¦2¡L¢ � �¢ K¶¦2¡L¢/« � ¢ @i£ ¢ ¯��5¤ K¥� X¦� ¦2¡C§ � � § K¶¦2¡C§V« � § @i£ § ¯��5¤ E LP 	aEcb�EcdeE � Z PÇM ETS1E5U5U5U°Eci Z E � X PÇM ETS1E5U5U5UIEci X E (3.37)

where �©¨ and ª ¨ ( « P 	aEcd ) are constants determined by considering the wave speeds

in the media, i Z is the number of grid points in the 	 direction, i X the total number of

grid points in the d direction and ( � Z E � X ) is a discretized grid position. ��� controls the

magnitude of attenuation and ª � modulates the width of the attenuation area. In this

experiment, we set ��� ( yP 	aEcd ) is to be 8 and ª � to -0.015 (Fig. 3.3).

We apply a line source in the SH wave case and compressional and vertically-directed
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Fig. 3.2. Description of 2-D homogeneous elastic media used for a test of absorbing boundaries and for a
modelling of elastic wave propagation in in the presence of a free surface (Lamb’s problem). Source ÌLÍ is a
source position for a test of absorbing boundaries and Ì � for a validation test for SH-wave problem. Also,
receivers Î»Ï and ÐÑÏ ) are placed horizontally at each depth ( �PÒ 1719 and 2500 m) in the medium to obtain
time responses for numerical comparisons.
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Fig. 3.3. Distribution of attenuation factors ( Ó9Ï , ÔÕÒ �CÖ�×�ÖuØ ) on a 2-D medium with four absorbing bound-
aries when Ù ¢ ÒÚÙ § Ò�Û and Ü ¢ ÒXÜ § Ò¯ÝAÞ3ß Þ3à�á in (3.37).
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Fig. 3.4. Successive forms of SH and P-SV wave propagation in a homogeneous elastic medium where four
artificial boundaries are treated by absorbing boundary conditions. For a test of the P-SV wave case, both a
compressional source and a vertically-directed force are considered.
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Fig. 3.5. Time responses of SH and P-SV waves (vertical component) at three receivers ( Î9Ï , ÔNÒgà Öãâ3Öãä in Fig.
3.2) in homogeneous media with four absorbing boundaries. For a test in P-SV waves, both compressional
force (CF) and vertically-directed force (VDF) are considered. Some major spurious waves are indicated by
arrows.

line forces for the P-SV wave case. Fig. 3.4 shows the absorption of the displacement

fields at four absorbing boundaries with time. The direct phases are absorbed effectively

at the boundaries, spurious waves reflected from the boundaries are weak enough not

to spoil the wavefields. To provide a quantitative check on the time responses in the

presence of absorbing boundaries, we consider three receivers placed horizontally at the

21th grid point below the top absorbing boundary ( å � ,  £P M ETS1E Ò in Fig. 3.2) where

free surface receivers are placed in later experiments (Fig. 3.5). The major spurious

waves are indicated by arrows to compare with the main phases (P, S). We note that

generally P phases are absorbed well at the boundaries, but small amounts of S phases

are reflected from the absorbing boundaries and spurious waves develop following the

S waves because the wavelength is comparable to the size of the attenuation zones. As

shown in A, B in Fig. 3.5, this effect is more marked at the four corners of domain where

the gradients in the attenuation factors are augmented (see, Fig. 3.3).
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Fig. 3.6. The attenuation factors ( Ó9Ï , Ô}Ò �CÖãØ ) distribution on the 2-D media. To consider a top boundary as
a free surface, the distribution of attenuation factors is shifted vertically by 20 rows of grids.

3.7 Validation tests of the scheme: I. SH waves

3.7.1 Medium with a free surface

Since the SH wave equation is relatively simple and does not generate additional phases

at the free surface, a SH wavefront can be simulated easily by introducing virtual image

sources (Virieux, 1984). But, in this study, we introduce a way of implementing a

traction-free condition in SH wave equation without use of a virtual image scheme. We

introduce a line source just beneath a free surface and then model the response of SH

wave.

The numerical model has a width of 10000 m and a height of 10000 m, with a

superimposed 128-by-128 grid. Here the top boundary is treated as a free surface. The

shear wave velocity ¾ is 1.8 km/s and the density in the medium is 2.2 g/cm Ñ . The source

is located at 1.5 km below the free surface (Fig. 3.2).

As the top boundary of a domain is considered as a free surface, we design the

distribution of the attenuation terms in (3.21) so as not to disturb the effects from the

presence of a free surface. We shift the attenuation layers from top and bottom artificial

boundaries by 20 material points to give

�À� � � Z E � X � P å Z � ¦3æl¢ � �¢ K¶¦3æl¢°« � ¢ @i£ ¢ ¯��ç¤ K å X¦� ¦3æZ§V« � § H 6 >F¯�� K¶¦3æZ§F« � § @i£ § H 6 >F¯��ç¤ E yP 	aEcdeE � Z PàM ETS1E5U5U5UIEci Z E � X PÇM ETS1E5U5U5U°Eci X E (3.38)
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Fig. 3.7. Snapshot of SH wave propagation in a homogeneous medium with a free surface at èlé�ê3ë ì s. The
entire wavefield is composed of direct (S) and reflected (SS) phases.

where we use íïî*�7íñð��7ò`� , óGî*�ôóñð��öõÀ�]¤ �e¢3÷ , ø¦î is the number of grid points in the� direction, ø/ð the total number of grid points in the ù direction and ( úûî]�5úuð ) is position in

the discrete grid (Fig. 3.6).

We compare the numerical time responses with analytic solutions for three receivers

with horizontal distances ü =0.3, 2.6, 4.5 km at depth 2500 m ( ýL� , þÈ� ¢\�çÿ1�5ò in Fig. 3.2).

The entire wavefields are composed of a direct phase (S) and a reflected phase (SS) from

a free surface (Fig. 3.7) and they exhibit a good match with the analytic solutions (Fig.

3.8).

3.7.2 Two-layered media

The formulation of the wavelet method is based on a fully heterogeneous medium and

so we can introduce particular cases by simply specifying the material parameters. We

therefore consider a further case where an analytic solution can be obtained for 2-D

propagation of SH waves in a two layer medium where the velocity in bottom layer is

twice of that in top layer and the density in bottom layer is 1.5 times of that in top layer

(Fig. 3.9). The displacement in SH waves lies along � -axis (i.e., normal to the � - ù plane

where SH waves are propagating), and reflection and transmission without conversion

of wavetype occurs at the interface.
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Fig. 3.8. Comparisons of numerical time responses of SH waves with analytic solutions for three receivers
( ��� , �}é����ãê	��
 in Fig. 3.2) in a homogeneous medium with a free surface. The receivers are placed horizon-
tally at depth 2.5 km with distances � =0.3, 2.6 and 4.5 km.
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Fig. 3.9. Description of a two-layered medium for modelling of SH wave propagation. The bottom layer has
the twice the velocity and 1.5 times the density compared to the top layer. Four receivers ( CD� , � éE���ãê	��
	�GF )
are placed inside the top layer and the numerical responses from the receivers are compared with analytic
solutions.
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Fig. 3.10. Snapshot of SH wave propagation in a two-layered medium at t=3.0 s. Direct wave ( H ), reflected
wave ( HJI ), transmitted wave ( HLK ), interface wave ( M ) developing on a boundary, and head waves ( N ) con-
necting the transmitted wave and reflected wave are displayed.
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Fig. 3.11. Comparison between numerical results and analytic solutions for SH waves in a two-layered
medium. The numerical responses are collected by four receivers ( CO� , �}éP���ãê	��
	�GF ) in Figure 3.9.

A line force is applied at (2734 m, 2656 m) ( Q in Fig. 3.9) and the internal boundary

is located at depth 5703 m with four artificial but absorbing boundaries ( RTS , RVU , RVW ,

R�X ). The SH displacements at four receivers ( Y � , þ � ¢\�çÿ1�5ò]�[Z ) collecting numerical

responses placed at (4844m, 1875 m), (6016 m, 3438 m), (7188 m, 1875 m), (8359 m, 3438

m), are compared with analytic solutions (Aki & Richards, 1980) based on the Cagniard
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Fig. 3.12. Description of a 2-D homogeneous unbounded medium and deployment of receivers ( �qÏ , Ô Òà Ö ß ß ß ÖG� ) with hypocentral distances from 5938 m to 8397 m.

technique (see, Fig. 3.11). There is very good agreement between the numerical and

analytic results for both the direct waves and those interacting with the interface between

the two layers. The pattern of the wavefield can be seen in the snapshot at 3.0 s (Fig. 3.10)

with a direct wave ( � ), reflected wave ( �:��� ), transmitted wave ( �:� ¨ ), interface wave on

the internal boundary (
Í
) and head wave ( � ) connecting transmitted wave and reflected

wave.

The comparisons with the analytic solutions in the homogeneous half-space

and layered medium case indicate the successful implementation of the wavelet

representation for both the main propagation and the boundary conditions.

3.8 Validation tests of the scheme: II. P-SV waves

3.8.1 Unbounded homogeneous media

In Figs. 3.12 and 3.13 we consider a numerical test of wave excitation by a delta function

source using the wavelet approach with comparison with analytic solutions (Pilant, 1979)

for four receivers ( Æ � ,  ßPgM E5U5U5U°E Õ in Fig. 3.12) at 5938 to 8397 m from the source (Fig.

3.13).

Because the wavelet transform can provide a full description of the effects of

a delta function, we get an excellent representation of the wavefield excited by a

vertically-directed force at each location. The slight discrepancies at later times come

from the absorbing boundary conditions. We also note that the high frequency waves

before the S waves (A in Fig. 3.13, B in Fig. 3.8) are related to the fact that the
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Fig. 3.13. Comparisons between numerical time responses of P-SV waves and analytic solutions for four
receivers in in a homogeneous unbounded medium.

differentiation of delta function (in a source region) using wavelets with a limited band

of frequency produces small amplitude high frequency waves before and after the exact

solutions. This phenomenon also can be found in a Fourier method (Kosloff et al., 1984).

3.8.2 Medium with a free surface (Lamb’s problem)

First, we consider the excitation of elastic waves by a surface source in a homogeneous

medium with a planar free surface (Lamb’s problem). We check the stability and accuracy

of the method with an explicit traction-free boundary condition by considering media

with two different values of Poisson ratio ( � =0.26, 0.4). Since Earth materials generally

have Poisson ratios between 0.22 and 0.35 (see, Lay & Wallace, 1995; Kennett et al., 1995;

Kennett, 2001), the tests with two different Poisson ratios can justify the stability of the

method for a general case. We note when � P . U�� , the medium would be fluid and then

the governing equation can be written as an acoustic wave equation.

For the first experiment for Lamb’s problem with � P . U�S Ö , we consider the

compressional wave speed ` to be 3.5 km/s, the shear wave speed ¾ to be 2.0 km/s
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Fig. 3.14. Description of a homogeneous elastic medium with a planar free surface. Two different Poisson
ratios ( ¾NÒ�Þ3ß â�¿3Ö Þ3ß � ) are considered for the accuracy tests. H indicates a line source position and two receivers
( �ÑÍ Ö � � ) are placed on the free surface at distances � = 4453, 7578 m.

and the density a to be 2.2 � o���� Ñ (see, Fig. 3.14). Whereas for the second experiment

with � P . U Õ , the physical parameters of a medium are ` P Õ U Õ km/s, ¾ P M U©À km/s anda P S1U�S � o���� Ñ . The 10 j 10 Á � 6 domain is represented through a 128 j 128 grid points.

The top boundary ( ÂVÃ ) is treated as a free surface where the traction vanishes, and

the other three artificial boundaries ( ÂÅÄ , Â�Æ , ÂVÇ ) with absorbing boundary conditions

following the technique in Sections 3.4.1 and 3.5. A vertically directed line force is applied

at (3750 m, 2000 m). Fig. 3.15 shows snapshots of elastic wave propagation for the two

Poisson ratios. In both cases, the wavefields are stable and clear reflected phases from the

free surface are generated (PP, PS, SP, SS in Fig. 3.15).

In Fig. 3.16 we display the calculated displacement seismograms at two receivers

( Æs: , ÆÜ6 in Fig. 3.14) located at 	 =4453, 7578 m on the free surface. The numerical

responses for the wavelet method are compared with analytic solutions based on

Cagniard’s technique (Pilant, 1979; Burridge, 1976). For each of the values of Poisson

ratios there is a good match with the analytic solutions up to the time when there is a

small wave reflection from the artificial boundary (about 3.5 s), indicating the successful

implementation of the free-surface boundary condition. For the larger Poisson ratio a

very slight time shift can be seen between the numerical and analytic solutions for the
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Fig. 3.15. Snapshots of elastic wave propagation in a homogeneous media with a planar free surface (Lamb’s
problem). The wavefields are computed for two different Poisson’s ratios ( ¾�Ò 0.26, 0.4).

large amplitude Rayleigh wave at 2.5 s but the amplitude and pulse shape are well

represented.

We note that adjustment of the absorbing boundary conditions may be needed to

avoid spoiling the main wavefield by the effect of spurious waves from absorbing

boundaries. In particular, spurious waves from surface waves (e.g., Rayleigh waves) tend

to become dominant, since surface waves experience lower order geometrical spreading

effect compared to body waves (i.e., in 2-D elastic medium with a line source, surface

waves do not decay with propagation distance ( n ), while body waves decay as È M/o n ).
Therefore, the absorbing region should be designed to give sufficient attenuation of the

surface waves by suitable modulation of the attenuation factors ( � Z E � X in (3.38)). We can
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use, for instance, an extension of the effective absorbing region by adjusting É Z and É X in� Z and � X , or enhancement of attenuation rate in the region by modulating å Z and å X .
3.9 Stability and numerical analysis

For stable computation in numerical modelling, one has to consider two kinds of

conditions; the time step condition and the grid dispersion condition. The usual time

step ( µ/# ) condition for grid steps ( µ 	 , µ d ) in grid-based methods for 2-D elastic waves, is

independent of the S wave velocity or of the Poisson’s ratio � , but related with largest

wave speed (usually P wave velocity, ` ) of a domain. We set µ 	 to be equal to µ d in this

study. Then an empirical stability condition for the relationship between the time step

and the grid step (cf., Virieux, 1986) can be expressed as

á ãi` ¼ â Z µ/#µ d � M E (3.39)

where ` ¼ â Z is the highest wave velocity in the domain and á ã is a constant depending

on the maximum order ( � ) of term (i.e., truncation order) considered in a discrete time

solution (3.33) based on Taylor expansion. Empirically, the á ã value linearly decreases



3.9 Stability and numerical analysis 49

with increase in the truncation order; when � P S , á ã P M . , when � P M . á ã P S , and

when � P S . , á ã PæM . Since á ã is in inverse proportion to � , the total computational

time is almost constant regardless of the value � used. Also, since � (or, á ã ) is related

only to the time step ( µ/# ), not to the grid sizes ( µ 	aE µ d ), the numerical accuracy of the

wavelet-based method is held constant during computation. However, we have found

that effects from boundary forcing terms (e.g., traction-free boundary conditions) can

be implemented more accurately with larger time step (i.e., larger values of � ). Taking

into account the representation of the physical medium, the frequency content of the

source time function for suitable excitation and the accuracy of modelling, we implement� P S . for the maximum order of term considered (i.e., á ã PÇM ) in this study.

In numerical modelling of wave propagation, every numerical method needs to satisfy

a minimum grid occupancy per wavelength not to evoke numerical grid dispersion. The

grid dispersion condition is related to the slowest velocity (i.e., smallest wavelength)

of elastic waves in a given medium (e.g., Rayleigh waves in a homogeneous medium

with a free surface). Generally, the minimum number of grid points per wavelength

varies with the type of wavelets implemented. From numerical experiments using

Daubechies wavelets, a high order wavelet (i.e., wavelets with large vanishing moments)

needs a much smaller number of grid points per wavelength for stable computation

than a low order wavelet (i.e., wavelets with small vanishing moments); as the order

of wavelets increases by a factor of two, only half as many grid points are needed.

Empirically, Daubechies-3 wavelets need 32 grid points, Daubechies-6 wavelets 16 grid

points, and Daubechies-20 wavelets 3 grid points. However it is rather difficult to

obtain accurate Daubechies wavelet coefficients with high order using known numerical

schemes (e.g., Shensa, 1992; Strang & Nguyen, 1996) due to instability and round-off

error in the numerical computation, so the relationship between an order of wavelets and

the minimum grid number can not be carried indefinitely. In this study, Daubechies-6

wavelets (Fig. 2.1(a)) have been implemented for a modelling of acoustic wave

propagation and Daubechies-20 wavelets (Fig. 2.1(b)) are used for modelling of elastic

wave propagation.

To provide a reasonable comparison with other numerical techniques (e.g., finite

difference method), we consider the computational resources needed for a specific

situation. We consider a medium with size 10-by-10 km, where the P wave velocity is 3.5

km/s, the S wave velocity 2.0 km/s and the density 2.2 � o����*Ñ , with a line source which

generates waves with dominant frequency 4.5 Hz. The fourth-order finite difference

method (FDM) then needs 250-by-250 grid points and the wavelet-based method (WBM)

based on Daubechies-20 wavelets needs 64-by-64 grid points. The discrete time step
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( µ/# ) is 0.006 s for the fourth-order FDM and 0.0446 s for the WBM when � P S . . The

memory occupation is 3.8 megabyte for the FDM and 2.5 megabyte for the WBM when

variables are held with double-precision accuracy. The CPU time for computation of the

time response for a 1 s interval is 126 s in FDM and 252 s in WBM on an Ultra Sparc

III (360 MHz). The most time consuming procedure in the WBM is differentiation (i.e.,

application of differential operator to velocity or displacement field, see, Beylkin (1992)),

which will need further improvement to achieve fast implementation. A comparison of

seismograms using the WBM and the FDM is presented in Fig. 3.17 and exhibits good

matches between the very different methods.

In order to convey an idea of the accuracy of proposed method, the number of

grid points per wavelength needed for stable and accurate modelling has been often

considered (e.g., Komatitsch & Vilotte, 1998). The fourth-order FDM needs at least 5

grid points per wavelength in simple media (Levander, 1988). However, it has been

reported that more grid points are needed in a model with strong impedance contrast

between layers (Shapiro et al., 2000) such as the contact of liquid and solid layers. On the

other hand, the WBM needs a constant number of grid points in any media. For media

with topography, the difference between the methods becomes larger and the WBM is

more economical than the FDM. A FDM based on an unstructured grid system, which is
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suitable for topography problems, needs a dense grid system (about 20 grid points per

wavelength, see, Käser & Igel, 2001), for media with sinusoidal topography, while the

WBM is still invariant (see, Section 5.4).

This advantage of the WBM is particularly important for accurate modelling in random

heterogeneous media or complex media, which have been considered for representation

of heterogeneities in the crust, since quantitative estimates of wavefield properties are

based on time responses from numerical modelling. Also, WBM generates accurate

time responses in a random medium with very strong variation of physical parameters,

while a fourth-order FDM displays artificially attenuated seismograms (see, Chapter 7).

Thus, the WBM can also be effective in Earth models where wave velocities and physical

parameters are strongly dependent on depth, without the need for the introduction of a

dense grid system.

For the stability test for the explicit implementation of traction-free boundary

condition, we consider both high and low Poisson’s ratio cases ( � P . U�S Ö E . U Õ ) and

compare numerical results with analytic solutions in Section 3.8.2.

3.10 Discussion

The wavelet-based method has been introduced for numerical modelling of elastic

wave propagation in two-dimensional media problems. The scheme represents

spatial differentiation operators through wavelet bases and the resulting second-order

differential equations for time are treated by a displacement-velocity formalism and a

semigroup approach.

The wavelet-based method for a spatial differentiation is not grid-based scheme in the

physical domain like a Fourier method although sampling is needed at given points.

Therefore, we can maintain the accuracy of computation of spatial derivatives uniformly

throughout a whole domain in contrast to usual grid methods such as the finite-difference

scheme that cumulates numerical errors during the computation of derivative terms from

grid point to grid point.

The displacement-velocity formulation recasts the elastic wave equations in a form

where the semigroup approach previously developed for a parabolic partial difference

equation can be employed. Using a Taylor expansion, a recursive discrete solution can

be computed by approximating an exponential function with a linear operator matrix in

the exponent. The traction-free boundary is treated by an equivalent force term in the

semigroup approach, leading to a stable implementation of the boundary conditions.

The use of equivalent force terms to represent boundary conditions may readily be

adapted to other classes of problems and we expect that we can include different types
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of boundary conditions or singular features in the media (e.g., azimuthal anomalies,

scattering) which are hard to describe by just controlling the physical parameters. The

inclusion of attenuation factors for treating artificial boundaries in elastic wave equations

reduces the cost of computation by allowing the use of smaller domains.

For classical 2-D problems, we have compared the numerical results with analytic

solutions and we studied the accuracy of the method. The method is not only stable

during numerical computation, but also has achieved accurate results in the comparisons.

We have not made use of the other commonly exploited aspect of wavelets, i.e., their

adaptivity. The difficulty of taking an adaptive approach, especially with elastic waves,

arises from the multiplicity of possible waves, which becomes most severe for highly

heterogeneous media. For some simple problems it may well be possible to make

some adaptive grid refinement. But, for the complex problems needed for seismological

applications, it is difficult to see how adaptivity can be introduced in a systematic way.



4
Modelling in heterogeneous and transversely isotropic

media

4.1 Introduction

We have developed a wavelet-based technique for modelling of elastic wave propagation

and the technique has been validated through comparisons between numerical results

and analytic solutions for simple media. In order to be effective as a general purpose

wave simulator, the wavelet-based method needs to be tested for problems with with

challenging heterogeneous media.

We model wavefields in two-layered media with sharp transition of physical properties

in solid-solid or fluid-solid configurations. In particular, many numerical methods have

difficulty in treating problems with fluid-solid contact without increase of the number of

grid points around the interface. As a more complex problem, we introduce a medium

with a linear gradient in physical properties and a stochastic heterogeneous medium. For

a test of stability of the method in media with extremely strong impedance contrast, we

consider a stochastic heterogeneous medium with a fluid-filled crack which is treated

with a line of grid points.

The wavelet-based method is also applied to modelling in transversely isotropic media.

As an extreme case we consider a solid-fluid contact problem where the solid layer is

transversely isotropic while the fluid layer is isotropic.

The wavelet technique will be extended to modelling in heavily perturbed media in

Section 7.2 and the accuracy and stability of the method will be tested.
53
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Fig. 4.1. Description of two-layered heterogeneous elastic media with a planar internal boundary at depth
3000 m. The elastic wave velocities in a bottom layer are twice of those in a top layer. An explosive source is
applied at (3.57 km, 1.5 km).

4.2 Two-layered media

4.2.1 Solid-solid configuration

The first model we consider for heterogeneous media cases is a two-layered media

problem which has often been considered in the modelling of elastic wave propagation

(Virieux, 1986; Kelly et al. 1976). Since, however, it is difficult to obtain an exact analytic

solution for the P-SV wave case due to wavetype coupling at boundaries, we consider

numerical modelling and features of elastic wave propagation in a medium with a free

surface. The medium has a horizontal internal boundary that divides it into two layers.

The compressional wave velocity in the top layer ( `�: ) is 3.15 km/s, the shear wave

velocity ( ¾ : ) is 1.8 km/s and the density is 2.2 g/cm Ñ . The velocities in the bottom layer

are twice those in the top layer ( `�6 =6.3 km/s, ¾ 6 =3.6 km/s) and the density is 3.3 g/cm Ñ
(Fig. 4.1). The width and height of the model are both 10000 m and an internal boundary

is placed at a depth of 3000 m. An explosive source is applied at 	 =3.75 km, d =1.5 km.

The top artificial boundary ( ÂVð ) is considered as a free surface and the other boundaries

( Â æ EñÂ ¹ EñÂ�ò ) are treated by absorbing boundary conditions.

The explosive source which generates only P waves makes it easier to identify phases

in the two layered media. As a result of wavetype coupling at the boundaries, the

wavefields are complicated and the entire wavefields are composed of direct P waves,
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Fig. 4.3. Description of a fluid-solid configurational medium. An explosive source is applied inside the solid
layer ( H ).

reflected P and S waves from the internal boundary (represented as PPr and PSr in Fig.

4.2) and the free surface (PP, PS), transmitted P and S waves at the internal boundary

(PPt, PSt), head waves (Ht, Hrp, Hrs) and interface waves. Note that various head waves

are generated at the free surface and the internal boundary. At the internal boundary,

the head waves connect the reflected phases with transmitted phases (e.g., Hrp, Hrs) or

transmitted phases to conversions (e.g., Ht), and they propagate to upper or lower layer

with a body wave velocity from the internal boundary.

4.2.2 Liquid-solid configuration

As an alternative two layer case we undertake a stability test of the method for

two-layered medium where a fluid layer � P . U�� overlies a solid layer (Fig. 4.3).

Many numerical methods have difficulty in treating this problem with a large contrast

in Poisson ratio due to the large discrepancy between the elastic wave speeds ( `vE ¾ ). The

incident P wave from an explosive source inside the solid layer gives rise to both P and

S reflected waves ( ��� n E � � n ) from the interface, but only a P wave ( ����# ) is transmitted

to the fluid layer (see, Fig. 4.4). This behaviour is correctly reproduced with the wavelet

treatment using an elastic representation for the whole medium.

For more general problems we need to be able to handle the case of non-planar

boundaries, Boore (1972) has suggested two approaches to represent an internal
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boundary which passes between grid points in finite difference modelling for SH

waves. These are firstly, the modification of the physical parameters at grid points near

the boundary, and secondly, the implementation of explicit boundary condition (i.e.,

continuity of stress over the boundary). However, as noted by Boore, both approaches

need additional computation and also may lead to instability. For a stable treatment with

the wavelet-based method, a grid generation technique (Section 5.2) can be implemented

by adjusting the grid system so as to be locally parallel to the boundaries (e.g., Komatitsch

et al., 1996). In the next chapter, we consider some topography problems using the grid

generation technique.

4.3 Medium with a general linear gradient in seismic properties

As a further more complex example we consider a model with a slanted linear gradient

in seismic properties (Fig. 4.5). We construct the model by setting the velocities and the

density to increase linearly in both the vertical and horizontal coordinates. This linear

gradient model provides a good test of the wavelet-based scheme in a model without

symmetries in the expected wavefront behavior.

The top layer is set to be homogeneous and the artificial boundary over the top layer is

considered as a free surface (Fig. 4.5). The compressional wave velocity ( ` ) ranges from

3.15 to 7.88 km/s, the shear wave velocity ( ¾ ) from 1.8 to 4.5 km/s, the density ( a ) from
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2.2 to 3.85 g/cm Ñ , and the angle of the slanted velocity structure is
Ò À]U*) o (Fig. 4.5). We

consider P-SV wave propagation in this model with a vertically-directed force applied at

(3750 m, 1500 m).

As the velocities increase with both depth and distance, the shape of wavefields

becomes elliptic towards the bottom right in Fig. 4.6. Since the velocity in media

increase gradually, there are no significant reflected phases or head waves at the internal

boundary. Therefore, entire wavefields are composed of direct phases (P, S) and reflected

phases from a free surface (PP, PS, SP, SS), surface head waves (H) and Rayleigh wave

(R in Fig. 4.7), as in a case of homogeneous medium ( ` =3.15 km/s, ¾ =1.8 km/s, a =2.2

g/cm Ñ ). The time responses at receivers on a free surface and at depth 2500 m in Fig. 4.7

show that the phases arrive faster than those in the homogeneous medium (Fig. 4.8).

We also note that the composite waves of S and Rayleigh waves in Fig. 4.7 (a) exhibit

larger amplitude of waves compared to those in homogeneous medium in Fig. 4.8 (a)

because the wave velocities of media in Fig. 4.5 are increased gradually from 	 P )<� .`. m

at the free surface and the phases are not attenuated with distance much compared to a

homogeneous medium case.
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4.4 Random heterogeneous media

Up to now, we have tested the wavelet-based method in simple models and shown

that the method could generate good numerical responses. However, the ‘real’ earth

has a significant variation in its mineral composition and grain size distribution due

to chemical activity with depth or tectonic processes, e.g., folding, faulting (Sato &

Fehler, 1998). As a result, these variations form strongly heterogeneous media in the

lithosphere with significant spatial variation of physical properties such as velocities and

density. These wide spatial variations of elastic properties in the lithosphere have been

revealed by various geophysical and seismic studies. Also, irregular heterogeneity in a

region about 200 km thick above the core-mantle boundary was revealed through seismic

records (Kennett, 1983).
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Fig. 4.8. Numerical time responses (vertical components) of elastic wave propagation in a homogeneous
medium recorded at 21 receivers placed horizontally (a) on a free surface and (b) at depth 2500 m.

Even if the numerical results exhibit good agreements with analytic solutions in

simple models, one can’t guarantee that methods can generate the reliable numerical

responses in a ‘real’ earth with often large variations of physical parameters just because

numerical methods based on discretized grid points, such as finite difference and finite

element methods, are not affected much in accuracy in simple heterogeneous media
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(e.g., two-layered media). Sato & Fehler (1998) indicated that the grid-based schemes

approximate the responses of the waves through averages over many grid points in

calculating spatial derivatives. Therefore, the methods become unstable in highly

perturbed media. Also, Sato & Fehler provided the fact as an evidence that the numerical

responses using the finite difference method show the correct arrival times but the

amplitudes of waves are large compared to the expected ones.

We therefore introduce a highly perturbed medium with maximum 20 % perturbation

on physical parameters which can be expected to represent an extreme for the ‘real’ earth

for which usual grid-based methods often fail to compute accurate responses. By testing

the stability of the wavelet-based method, which can compute spatial derivative exactly

and stably, we show the possibility of the application of the method as a tool for the ‘real’

earth. For the construction of a perturbed medium, we follow the scheme of Roth & Korn

(1993), see also Sato & Fehler (1998).

Fig. 4.9 shows the stochastic perturbation of P and S wave velocities added to

background homogeneous medium with ` =3.15 km/s, ¾ =1.8 km/s and a =2.2 � o���� Ñ .
The systematic spatial perturbation in medium is considered by implementing a von

Karman autocorrelation function with a correlation distance
� P 10 km. We place a

compressional source inside a medium at (3750 m, 5500 m). The entire wavefields

are composed of direct phase (P), reflected waves (PP, PS) from a free surface and

various complex back-scattered waves (Fig. 4.10). Also, due to the generation of
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back-scattered waves, the main phases exhibit apparent attenuation during propagation

in the media. The numerical responses in the random medium are compared with those

in the homogeneous medium in Fig. 4.11. The numerical responses with large amplitudes

of back-scattered waves are stable throughout the time interval (Fig. 4.11).

These numerical calculations using the wavelet scheme illustrate the resilience of both

P and S wavefronts in the presence of strong heterogeneity. Significant coda waves are

shed and there are local perturbations of the wavefronts, but the dents are soon infilled

by ‘wavefront healing’ (see, Igel & Gudmundsson, 1997). There is some redistribution of

amplitude, but the major phases are recognizable in Figs. 4.10, 4.11 despite the substantial

variations in medium properties (Fig. 4.9).
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Fig. 4.11. Comparison between numerical time responses of P-SV waves (vertical components) (a) in a ho-
mogeneous medium and (b) in a stochastic heterogeneous medium. The 21 receivers are placed horizontally
at depth 2500 m.
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Fig. 4.12. Description of a medium with a fluid-filled crack. The compressional wave velocity and density
in the crack are half of those in reference medium. The reference medium is considered as homogeneous or
stochastic heterogeneous with a standard deviation by 10 %. Four artificial boundaries ( [7\ , [�] , [�^ , [�_ ) are
treated as absorbing boundaries.

4.5 Medium with a fluid-filled crack

Our next example is more complex, with elastic wave propagation in a medium

containing a fluid-filled crack (Fig. 4.12). Such a feature with a high contrast over a
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Fig. 4.13. Snapshots of elastic wave propagation in a complex medium with a fluid-filled crack for two cases;
the background medium is considered either homogeneous or stochastic heterogeneous.

narrow interval presents a major challenge to traditional grid based methods because of

the rapid variations in the medium. We note that the wavelet-based method can give

accurate responses in a medium with highly and abruptly varying physical parameters,

as demonstrated by comparison of numerical differentiation by the wavelet-based

method with that achieved with a fourth-order finite difference method. The wavelet

method can achieve accurate differentiation even when the higher order finite difference

method is having difficulties (see, Section 7.2).

In applications to seismology we need to take account of the complex nature of

the ‘real’ Earth with both mixtures of materials and strong local variations in seismic

wave speeds. Scattered waves are a major feature of observed seismograms and the

most effective quantitative way of simulating such effects is to introduce some form of

stochastic representation of wave speed superimposed on a long wavelength structure

(e.g., Frankel & Clayton, 1986).

We therefore compare the results for the fluid-filled crack problem with a

homogeneous background medium and a heterogeneous medium where the variations

in wave speed are based on the Von Karman autocorrelation function (see, Sato & Fehler,

1998) with 10 % standard deviation. A detailed description of the generation of a

stochastic heterogeneous medium is given in Chapter 7.

A compressional force ( � in Fig. 4.12) is applied at (3750 m, 1500 m) and the four
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artificial boundaries are treated as absorbing boundaries. The compressional wave

velocity in main medium is 3.15 km/s, the shear wave velocity is 1.8 km/s and the

density is 2.2 � o���� Ñ . The crack is filled with fluid for which the compressional wave

velocity and density are half of those of main medium.

Fig. 4.13 shows snapshots of the elastic wave propagation for this crack problem at#ïPÇM U�� s. Reflected phases ( ��� � , � �Û� ) from the surface of crack, transmitted phases ( ��� ¨ ,� � ¨ ) through the crack and diffracted phases ( ���a` , � � ` ) from both ends of the crack

can be seen clearly in the results for the homogeneous background in the left panel of

Fig. 4.13. For the perturbed medium in the right panel, the generated phases are mixed

with scattered waves arising from the whole domain through which the P wavefront has

passed, and the wavefield displays a more complex character. Such a combination of a

clear initial phase and a complex coda fits well with the nature of observed seismograms.

4.6 Transversely isotropic media

The earth is generally stratified in elastic properties and transversely isotropic media can

represent earth structures well. The 2-D P-SV wave equations in a transversely isotropic

medium have the same form of those in isotropic media (3.5) but the stress terms are

expressed by (e.g., Carcione et al., 1988)k]Z5Z P�Ê :J: W�[]ZW 	 KåÊ : Ñ W�[®XW d E k®XJX P�Ê : Ñ W�[]ZW 	 KåÊ ÑJÑ W�[®XW d Ek]Z°X P k®XÂZ P�Ê ÓJÓ c W�[]ZW d K W�[®XW 	 f E (4.1)

where ÊV� � ( � E  =1,3) represents an elastic modulus written in a compressed matrix notation

(e.g., Kennett, 2001, ch.8). The physical properties of medium are symmetric about the d
axis, and the compressional and shear wave speeds are given by` | P b Ê :J:a E `@c P b Ê ÑJÑa E ¾ c P b Ê ÓJÓa E ¸ÈP b Ê : Ña E (4.2)

where subscripts Ë and ~ represent for vertical and horizontal propagation (e.g., Kennett,

2001) and ¸ , a supplementary velocity term, is introduced for the complementary

description of physical properties.

The equation system for transversely isotropic media can be readily recast into a

suitable form for the wavelet method following the procedure in Chapter 3. We first

consider a homogeneous transversely isotropic medium with `'c =3.6 km/s, ` | =4.0 km/s,

¾ c =2.16 km/s, ¸ =1.1 km/s, and a =3.0 g/cm Ñ . The domain is composed of 128-by-128

grid points, corresponding to a 10-by-10 km medium. The top artificial boundary is
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Fig. 4.14. Snapshots of P-SV wave propagation at � =0.8 and 2.0 s in a homogeneous transversely isotropic
medium. The horizontal and vertical P wave velocities ( Ê � , Ê�d ) are 4.0 km/s and 3.6 km/s, S wave velocity
( Ë�d ) is 2.16 km/s, e (= f g Í Ó ÎñÌ ) is 1.1 km/s, and the density is 3.0 g/cm Ó . A vertically directed force is applied
at (3.75 km, 2.0 km).

considered as a free surface and the other boundaries are treated by absorbing boundary

conditions. A vertically directed point force is applied at 	 =3.75 km and d =2.0 km.

Fig. 4.14 displays the characteristic wavefront pattern in transversely isotropic

medium. Since the horizontal P-wave velocity ( ` | ) is larger than the vertical velocity

( `@c ), the P wavefronts become flatter on the vertical axis. A similar pattern is found in

the S wavefronts, and the reflected waves from the free surface display the wavetype

coupling effect clearly.

As a challenging experiment, we consider a two-layered medium where a transversely

isotropic solid layer overlies on an isotropic fluid layer. The physical properties in the

upper layer are same as those of the homogeneous medium, and the compressional wave
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Fig. 4.15. Snapshots of P-SV wave propagation at � =0.8 and 2.0 s in a two-layered heterogeneous medium
where a transversely isotropic solid layer overlies on isotropic fluid layer. The parameters in the upper layer
are the same as those in Fig. 4.14, and the compressional velocity in the fluid layer is 2.0 km/s and the
density is 1.2 g/cm Ó . The planar internal boundary is placed at a depth of 4.0 km.

velocity in the fluid layer is 2.0 km/s and the density is 1.2 g/cm Ñ . The layer boundary

is placed at depth 4 km below the free surface.

There is wavetype coupling at both boundaries (free surface, internal layer boundary),

various reflected and head waves develop and propagate in the upper layer (Fig.

4.15). On the other hand, only compressional waves are present and propagate in the

lower layer. The wavelet-based method generates stable wavefields in heterogeneous

anisotropic medium with sharp transition of physical properties.
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4.7 Discussion

We have demonstrated the way in which the wavelet projection can provide a means

of coping with physical variations on small scales. For this purpose, we introduced

several heterogeneous models and randomly perturbed media to test the capability of the

method. The wavelet-based method works well not only in the case of a sudden variation

of physical parameters at a boundary, but also for linear gradients where physical

parameters are changing continuously. In particular, the strength of the approach lies

in applications to complex media, e.g., a medium with a fluid-filled crack, due to

compact support of the representation of differential operators with wavelets. Thus,

the wavelet-based method allows a correct representation of seismic wave behavior in

the crack problem with a sharp variation of physical parameters over a narrow region

(defined by one row of grid points) in random media.

Also, it was shown that method provide stable time responses in a highly perturbed

medium and in anisotropic media with a sharp transition in physical parameters.

We expect that the method can be extended to complex media problems, including

random heterogeneities and anisotropic structures, where accurate treatments of spatial

derivatives are essential for stable modelling.



5
Modelling in media with surface topography

5.1 Introduction

For accurate measurement of amplification or deamplification of seismic waves in the

crust, it is important to take account of surface-topography in seismic modelling. The

consideration of surface topography in seismic modelling has been a challenging issue

for most numerical techniques, and numerous studies have considered the problem.

Although finite difference techniques may treat a simple geometry for topography with

accuracy, it is not a trivial problem to consider a complex surface topography. Generally,

as the geometry becomes more complicated, the scheme displays lower accuracy of

results and has restriction in consideration of perturbation in media. Of course, for

the consideration of arbitrary complex topography, there were trials in finite-difference

community (e.g., Jih et al., 1988, Ohminato & Chouet, 1997).

Jih et al. (1988) approximated surface topography with various sizes of triangle grids,

and satisfied the free-surface conditions in a rotated coordinate system parallel to the

surface topography. This approach appears promising, but has limitation for larger

Poisson ratios and also heterogeneities can not be considered around the surface.

Ohminato & Chouet (1997) introduced a simple scheme for arbitrary surface

topography. They manipulate the value of the vertically differentiated normal stress

field at the free surface (i.e.,
W]X2k®XJX Ý X ½ > ) by a factor of two, so that the normal stress at

the free surface is equivalent to that above free surface. The stresses above free surface

are determined to be vanished since the Lamé coefficients are set to zero in the scheme.

However, the scheme does not satisfy the traction-free boundary condition exactly (i.e.,

vanishing of normal stress), but rather fulfills the required condition in an approximate

way by setting very fine grid steps in the domain. Therefore, they needed 25 grids per

wavelength for stable computation. As a result, this method needs huge computational
69
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labour and memory, and thus the method may not be suitable for large scale seismic

modelling.

The finite element method has an attractive strong point since it can satisfy naturally

the traction-free boundary conditions including surface topography. However, finite

element methods exhibit numerical dispersion in low-order schemes and can generate

spurious waves with higher-order schemes (Komatitsch & Vilotte, 1998).

Combining the strong points of finite difference and finite element methods, Moczo et

al. (1997) introduced a hybrid modelling technique that applies the finite element method

for the computation in near surface structures and the finite difference method to the

other media. However, this technique needs a restricted condition in generation of grid

system for the finite difference method and mesh for finite element method.

Another hybrid method based on the boundary-integral method and the discrete

wavenumber method has been introduced for modelling in media with topography

(Bouchon et al., 1996). This semi-analytic technique can model topographic effects, e.g.,

diffraction, on elastic waves accurately. However, this technique still has difficulty in the

treatment of arbitrary non-layered heterogeneities inside a medium.

The Chebyshev-spectral method can incorporate the traction-free conditions easily

unlike spectral (or, Fourier) method. In particular, Tessmer et al. (1992) presented a

technique based on a grid generation (or, grid mapping) scheme for the implementation

of the free surface conditions for surface topography in the Chebyshev-spectral

modelling.

We apply the grid generation scheme to the wavelet-based method and see the

applicability in topographic structures. In order to validate the scheme, we compare

numerical results with analytic solutions in an inclined medium, and show the stability

of the method in media for highly varying topography by reducing the number of grid

points describing the topography.

5.2 Grid generation scheme

To treat a medium with topography in the wavelet-based method, we introduce a grid

generation technique (or, grid-mapping technique; Tessmer et al., 1992); a rectangular

grid system can be mapped into a curved grid system considering physical topography

by using an one dimensional linear stretch in the vertical direction. For convenience,

we set the topography of the bottom artificial boundary to be same as that of the free

surface and stretch the grids from the free surface to the lower artificial boundary. So,

the function of grid mapping from a h - i coordinate system to a 	 - d coordinate system is
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given by	��jh]Eki]� P h]Ed��jh]Eki]� P d°>`�jh�� K i�E (5.1)

where d°>��jh�� is a topography of a free surface which depends on only h , and the

rectangular domain size is considered to be normalized so as to satisfy
. �lh]Eki � M .

The spatial derivatives of any variable ¥ in a physical grid system can be represented

using a chain rule byW ¥W 	 P W hW 	 W ¥W h K W iW 	 W ¥W i EW ¥W d P W hW d W ¥W h K W iW d W ¥W i E (5.2)

where the matrices of the transformation is given byW hW 	 P O W dW i E W hW d PNÚ O W 	W i EW iW 	 PNÚ O W dW h E W iW d P O W 	W h E (5.3)

and the Jacobian O isO PàM@m c W 	W h W dW i Ú W 	W i W dW h f PÇM U (5.4)

Therefore, from (5.3) and (5.4), equation (5.2) can be rewritten asW ¥W 	 P W ¥W h Ú W d°>W h W ¥W i EW ¥W d P W ¥W i U (5.5)

Using (5.5), we can rewrite the linear operator ( Á�� � , � E  P 	aEcd ) for elastic wave

equations in (3.8) with the remapped coordinate scheme:Á Z5Z P MaÀo WW h Ú W d°>W h WW i»p¯o � Ù K S e � WW h Ú � Ù K S e � W d°>W h WW i»p K Ma WW iÀo e WW i»p EÁ Z°X P Ma WW i o e WW h Ú e W d°>W h WW i»p K MaÀo WW h Ú W d°>W h WW i»p¯o Ù WW i�p EÁ XÂZ P Ma WW i o Ù WW h Ú Ù W d°>W h WW i p K Ma o WW h Ú W d°>W h WW i p¯o e WW i p E (5.6)

Á XJX P MaÀo WW h Ú W d°>W h WW i»p¯o e WW h Ú e W d°>W h WW i»p K Ma WW iÀo � Ù K S e � WW i»p U
For numerical stability, we continue to use a locally homogeneous medium around the

source. Following the scheme in Chapter 3, we assume physical parameters ( Ù}E e E�a ) are

constant in the source region and therefore the linear operators Á |� � ( � E  åP 	aEcd ) for the
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source region can be written as

Á}|Z5Z P Ù K S ea W 6W h 6 Ú Ù K S ea W 6 d°>W h 6 WW i Ú Se� Ù K S e �a W d°>W h W 6W h W iKon Ù K S ea c W d°>W h f 6 K e aap W 6W i 6 EÁ}|Z°X P�Á}|XÂZP � Ù K e � a W 6W h W i Ú Ù K ea W d°>W h W 6W i 6 E (5.7)

Á}|XJX P e a W 6W h 6 Ú e a W 6 d°>W h 6 WW i Ú S ea W d°>W h W 6W h W i K n e a c W d°>W h f 6 K Ù K S ea p W 6W i 6 U
To satisfy the traction-free boundary conditions on a free surface in a medium with

topography, we consider stress terms on a rotated local coordinate system ( 	rq Ecd�q ) where

the d�q axis is perpendicular and the 	7q axis is parallel to the tangent to the free surface. The

angle of rotation ( s ) is determined by the rate of variation of local topography compared

to the horizontal distance ( h ) in the rectangular grid system:s PBtvu V @�: c W d°>`�jh��W h f E (5.8)

where d°>`�jh�� is the topography of the surface as a function of horizontal position ( h ).
The relationships among the stress components in the physical coordinate system and

a rotated local coordinate system are given by (see, Tessmer et al., 1992)k � �ðP » ¼ » ² � ¼ � � ² � k q¼ ² E (5.9)

and k q� � P » ¼ » ² � � ¼ � � ² k ¼ ² E (5.10)

where � E  E � E Ä;P 	aEcd and the directional cosines are

· � Z5Z � Z°X� XÂZ � XJX ¿ P · �xw T�s T5U�V sÚ T5U�V s �xw T�s ¿ U (5.11)

From (5.9), we can estimate
k q¼ ² using

k � � . As
k qZ°X and

k qXJX are zero on the free surface,

we can write equivalent force terms for a free surface boundary using
k � X ( yP 	aEcd ) in the

form:± � []Z � P ± � [®X � P . E± �DË Z � P Ma�� � Z Ú WW 	�y �Z5Z Ú WW d@y �Z°X � E (5.12)

± �DË X � P Ma�� � X Ú WW 	 y �Z°X Ú WW d<y �XJX � E
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Fig. 5.1. Description of a 2-D homogeneous elastic medium with topography. For an accuracy test in an
unbounded medium with a vertically directed force at H*Í , four artificial boundaries ( [�\ , [�] , [�_ , [�^ ) are
treated as absorbing boundaries and numerical results from four receivers ( ��Í Ö � � Ö � Ó Ö �<z ) are compared
with analytic solutions (Section 5.3). In numerical modelling of seismic wave propagation in the medium
for three different source positions ( H � Ö H Ó Ö H�z ), the top boundary ( [�\ ) is considered as a free surface (Section
5.4).

where y �� � ( � E  yP 	aEcd ) is the composite effects of the stress components at the free surface

which can be computed from (3.32) and (5.9) byy �Z5Z P�µ �DdY� W k]Z5Z Ú:�xw T 6 s k q �Z5Z [ Ey �Z°X P�µ �DdY� W k]Z°X Ú T5U�V s �xw T�s k q �Z5Z [ E (5.13)y �XJX P�µ �DdY� W k®XJX Ú T5U�V 6 s k q �Z5Z [ U
Here,

k q �Z5Z is a corrected stress term (see, Section 3.4.2) for
k qZ5Z at a free surface in a rotated

local coordinate system including the effect of topographyk q �Z5Z P � Ù K S e � k qZ5Z Ú Ù k qXJXÙ K S e E (5.14)

where the stress components
k q� X ( ºP 	aEcd ) on the free surface can be computed from

(5.10).
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Fig. 5.2. Comparisons with analytic solutions in a homogeneous unbounded medium represented by a grid
system with sinusoidal topography.
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Fig. 5.3. Description of a homogeneous elastic medium with a inclined free surface. A line force ( H ) normal
to the free surface is applied at a depth of 2 km and four receivers ( ��Í Ö � � Ö � Ó Ö �<z ) on a free surface record
numerical responses to be compared with analytic solutions.

5.3 Validation tests for surface topography

We introduce an unbounded elastic medium with a sinusoidal internal topography (see,

Fig. 5.1); i.e., the internal horizontal grids are set to be sinusoidal. For this purpose, we

consider four artificial boundaries ( ÂÅÃïEñÂVÇ�EñÂ�Æ�EñÂ�Ä ) with absorbing boundary conditions.
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Fig. 5.4. Comparisons of numerical responses with analytic solutions at four receivers ( �qÏ , ÔïÒ¥à Öãâ3Öãä3ÖG� , in
Figure 5.3) in a homogeneous medium with an inclined free surface.
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Fig. 5.5. Snapshots of elastic wave propagation in a homogeneous media with a inclined free surface at t=1.9
s.

The material properties are as in Section 3.8.2 with a Poisson ratio of 0.26. The period

of sinusoidal topography is 5 km and the amplitude is 1 km. A vertically directed force

( �a: in Fig. 5.1) is applied at (3125 m, 3125 m) from the left and bottom boundaries and

four receivers ( Æ � ,  �P M ETS1E Ò E Õ ) at (3906 m, 5469 m), (4688m, 5469 m), (6250 m, 7813
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m), (7031m, 7813 m) from the left and bottom boundaries record the numerical response.

As we see in Fig. 5.2 a good match is achieved between the numerical seismograms

using the grid-remapping and the analytic solutions (Pilant, 1979) for an unbounded

domain. The ripples in the numerical solution at later time in the shear wave portion

of the response arise from the discretization of the sinusoidal grids and could be reduced

by finer discretization of the medium.

Next, we consider the more difficult problem of an elastic medium with topography

at the free surface. We introduce a model where analytic solutions can be obtained; a

homogeneous medium with an inclined free surface and a line force which is normal to

the topography. The analytic solutions can be computed from those of Lamb’s problem

for a planar surface as in Section 3.8.2 via suitable rotation of a coordinate system.

The line force normal to the surface is introduced at (3750 m, 2000 m) from the left

and top boundaries and four receivers ( Æ � ,  �P M ETS1E Ò E Õ ) are placed on the free surface at

distance 	 P 4453, 5234, 6797, 7578 m from left boundary (see, Fig. 5.3). In the numerical

model we need to have periodicity and so the slanted boundary has to be connected

at each end with a hill and valley structure. The comparisons between the numerical

and analytic results at the four receivers in Fig. 5.4, exhibit a good match for the time

window before any interaction occurs with the edges of the topography. The more distant

receivers ( Æ Ñ , Æ Ó ) display some amplitude discrepancy in the S waves due to effects of

reflected waves from the hill near right boundary ÂÅÄ (see, Fig. 5.5) which are not included

in the analytic results.

5.4 Elastic wave propagation in media with a sinusoidal surface topography

The results of our validation tests of the wavelet-based method for the

topographic-media scheme, indicate that the method can be expected to generate

accurate responses in complex-topography problems with sufficiently fine discretization.

However, it is also important to check the stability of the method with regard to the

discrete representation of the topography, we therefore consider two cases of sinusoidal

topography: with low frequency and high frequency variations.

First we consider the case with long wavelength surface topography, with the same

form and material properties as in Section 5.3, and implement line forces at three different

positions; sources beneath the crest ( �a6 in Fig. 5.1), on the side of the hill ( � Ñ ) and in a

trough ( � Ó ). All forces are applied at (3750 m, 2000 m) from the left and top boundaries

(i.e., the sinusoidal topography is shifted relative to the line-force positions). The top

boundary ( ÂVÃ ) is considered as a free surface in these examples. We see from Fig. 5.6, that

the position of source has a very strong influence on the character of the elastic wavefield.
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The main P and S phases are well developed in all cases but the secondary phases are

rather different. Internal reflected waves can be generated inside the “hills”, and there

is also the possibility of body waves produced by conversion from the Rayleigh waves

propagating along the sinusoidal free-boundary. The influence of the discretization is

minor at this scale.

For the case with high frequency surface topography we consider a sinusoidal surface

with 1428 m wavelength and an amplitude of 250 m. This leads to 9.1 grid points each

period of the topography for the 128 j 128 grid system. Fig. 5.7 shows snapshots of elastic

wave propagation in the medium at #�PàM U Õ ETS1U Õ s, and the wavefields generated are stable

throughout domain as would be expected from the analysis in Section 3.9. The effect of

the topography is to produce a complex pattern of scattered phases following the S wave.
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There is now some influence from the coarse discretization of the surface, the small stair

steps lead to irregularities in the coda.

5.5 Discussion

We introduced a grid generation scheme for the wavelet-based method In order to treat

topography of media, the wavelet-based method was augmented with a grid generation

scheme which maps a rectangular grid system to one fitting to the nature of the medium.

The free surface condition could be satisfied by rotating appropriately the condition for

planar media.

The technique was validated through comparisons between numerical results and

analytic solutions in unbounded medium represented by sinusoidal grid lines and a

medium with a slanted free surface. The comparisons with analytic results show that

the numerical scheme is accurate. Through experiments in modelling in media with

sinusoidal topography, we have shown that the stability of the wavelet-based method

allows a sparse grid step in the representation of topography. In the experiment, the

surface waves are found to convert progressively to body waves during propagation

following the topography. By considering the spatial derivatives which are required

in the grid mapping scheme, with the wavelet technique it is possible to incorporate

complicated rough topography. Thus, the wavelet method can be implemented for the

understanding of seismic waves in complex media and for the extraction of quantitative

physical information.



6
Modelling including dynamic sources in tectonic regions

6.1 Introduction

Tectonic regions are associated with complex and faulted structures which can bring

material with considerable contrast in properties into close proximity. Earthquakes are

initiated in regions of considerable heterogeneity which needs to be taken into account

in the description of the generation of seismic waves by the source. Small distortions in

the wavefield associated with systematic structure can lead to substantial differences on

further propagation (e.g. Li & Vidale, 1996).

It is therefore necessary to develop techniques which can consider sources in

a heterogeneous environment and which do not depend on the commonly used

assumption of local homogeneity near the source (e.g., Alterman & Karal, 1968; Kelly

et al., 1976; Levander, 1988). In many circumstances such an approximation can work

well when waves propagate from a simple into a more complex zone (e.g., Yomogida &

Etgen, 1993), but may be misleading where the source region itself is complex.

Two representative regions in the earth where tectonic processes develop strongly

heterogeneous structures in which earthquakes initiate are fault and subduction

zones. Many different styles of numerical techniques have been used to simulate the

propagation of seismic waves in such regions. Finite difference methods have been used

in investigating trapped waves in fault zones (Li & Vidale, 1996; Igel et al., 2002) and

guided waves in a subduction zone with an accretionary prism (Shapiro et al., 2000).

To study waveform and amplitude variations associated with subduction zones, Vidale

(1987) applied a coupled finite-difference and Kirchhoff method, Furumura & Kennett

(1998) implemented a pseudospectral method, and Cormier (1989) and Sekiguchi (1992)

used Gaussian-beam methods.

Classical finite difference techniques (e.g., Alterman & Karal, 1968) generally need
80
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more grid points per wavelength than other methods implementing a high-accuracy

differentiation scheme (e.g., the pseudospectral method). Since a large region needs to

be considered for subduction zone modelling memory requirements are high. If strong

heterogeneity needs to be modelled, numerical dispersion is likely. Higher-order finite

difference techniques (Igel et al., 1995; Falk et al., 1998), cure most of the limitations in

classical finite difference methods, but require the source time functions to be smooth

enough to be differentiated many times. This requirement makes it difficult to handle

dislocation sources whose displacement time functions are complicated and may well

not be differentiable.

The Gaussian-beam method is attractive because of its low computational cost

for simple situations because it is built on the framework of ray theory, with the

superposition of all Gaussian beams passing through the neighbourhood of a point.

However, in zones of high heterogeneity the ray tracing itself becomes a daunting task.

Further, it is difficult to include all necessary secondary phases which may affect the

waveforms, such as interface waves along a zone of contrast such as the boundary of a

subducting slab.

As we have discussed in the previous sections, the pseudospectral method (or Fourier

method, Kosloff, et al., 1984) has a difficulty in implementing the traction-free condition

on a free surface effectively, and the Chebyshev spectral method (Kosloff et al., 1990)

suffers from a nonuniform spatial grid spacing in the vertical direction imposed from the

character of the Chebyshev polynomials.

The wavelet-based method (WBM) has been introduced for modelling of elastic wave

propagation in Chapters 2, 3. Because the representation of differential operators is

carried to high accuracy, the WBM approach is very effective for describing propagation

through highly heterogeneous random media retaining both accuracy and stability (see,

Chapter 7). In this chapter, we consider the extension of the WBM to a general source

representation (such as dislocation sources) embedded in heterogeneous zones. The

treatment of heterogeneity is based on splitting the second order differential operators

in the zone around the source into two parts, so that a simple first order operator is all

that is left at the source location itself.

The extended WBM scheme is applied to two representative problems with

heterogeneous source regions: fault and subduction zones. Fault zones are composed of

physically perturbed materials created during prior rupturing processes, and resultantly

behave as low-velocity structures. In contrast, a subduction zone has a dynamically

subducting cool slab which displays high-velocity anomaly to surrounding media.

In the application to fault-zone problems, we probe the effects of trapped waves in the
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low-velocity fault zone and the permanent displacements around sources. We include

dislocation sources (including a propagating rupture) in the fault zone and are able to

include an arbitrarily complex time history of slip to handle the complexities of real

events.

In modelling for subduction zones, we investigate waveform and amplitude variation

of SH waves propagating through a subducting slab. The size of the subduction zone

means that we need to take account of the sphericity of the Earth and we make the

approximation of working in a cylindrical coordinate system for SH waves. Previous

studies (e.g., Sekiguchi, 1992) on waveform variation in subduction zones did not pay

attention to effects of interface waves and post critically reflected waves sufficiently in

regional distances, we investigate those effects by varying the relative position of the

source and the slab boundaries. In particular, since earthquakes are, in general, close to

the boundaries of the subducting slabs (e.g., Pankow & Lay, 2002), there are possibilities

for the development of interface waves which can travel considerable distances along the

slab.

6.2 Modified technique

6.2.1 Theory

We modify the source representation by using a linear combination of operators to cope

with heterogeneity whilst retaining numerical stability. We require that the operators

both inside and outside the source zone should be equivalent to the linear operators Á<� �
in (3.8) for a general medium. We extract the Á Û� � contribution in the source region, and

write the new form of the linear operators Á �� � as

Á �Z°X P�Á Z°X E Á �Z5Z Pfç Á Z5Z E d}|9d/Û K R EÈdy�Åd/Û Ú R EÁ ÛZ5Z KåÁ `Z5Z E d/Û Ú R � d � d/Û K R E
Á � XÂZ P�Á XÂZ E Á � XJX P ç Á XJX E 	~|=	�Û K R E,	È�=	�Û Ú R EÁ ÛXJX KåÁ ` XJX E 	�Û Ú R � 	 � 	�Û K R E (6.1)

where �
	�ÛIEcd/Ûî� is the source position and
R

defines the size of the immediate source zone.

The additional operators Á `�´� ( yP 	aEcd ) in a heterogeneous source zone take the formÁ `Z5Z P Ma WW 	�o ���*Ù K S�� e � WW 	qp K Ma WW d;o � e WW dlp EÁ ` XJX P Ma WW 	 o � e WW 	 p K Ma WW d o ���*Ù K S�� e � WW d p E (6.2)

where �*Ù��
	aEcdY� P Ù��
	aEcdY� Ú Ù®Û and � e �
	aEcdY� P e �
	aEcdY� Ú e Û .
It can be readily proved that Á Û�´� K¶Á `�´� is mathematically equivalent to Á��´� . Also, note
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that the terms Áv� � ( ���PÃ ) do not need to be recast in the new form since only multiple

differentiations in the same direction (e.g.,
W1Z\W�Z

or
WYX5WYX

) develop numerical instability

and they are not included in these operators. Therefore, the original form of Á � � can be

implemented directly when �/�På .
In addition, we can find that only the linear operators Á Û� � are needed at the source

position since the Lamé coefficient difference terms ( �*Ù , � e ) vanish at this point. So,

with this modified linear operators Á �� � , one can treat any variation in the properties of

source regions without numerical dispersion.

6.2.2 Validation test

In order to test if the modified procedure is equivalent to the previous technique

in Sections 2.4.1 and 3.2.2, which has been validated by comparison with analytical

solutions and other numerical methods, we compare the time responses of both

techniques in a heterogeneous situation. We implement several values of
R

and compare

the results to determine a suitable value for accurate and stable modelling and also

to investigate whether any numerical anisotropy arises from the implementation of a

combination of linear operators (see e.g., Käser & Igel, 2001).

We consider a two-layered medium (Fig. 6.1) in a 10 j 10 km domain, represented by

128 j 128 grid points. The elastic wave velocities in the lower layer are twice those in

the upper layer and the density ratio is a factor of 1.5. The four artificial boundaries

( Â�ðïEñÂ æ EñÂ ¹ EñÂ�ò ) are treated via absorbing boundary conditions. A vertically directed

force is applied at (2.34 km, 2.97 km) inside the upper layer and 8 receivers ( Æ � Ek� � , =1, U5U5U ,4) are deployed with a spacing of 1.875 km starting from 	 =2.5 km at depthsd =3.75 km and d =6.88 km. A Ricker wavelet with dominant frequency 4.5 Hz is

introduced as the source time function.

When direct P and S waves are incident on an internal boundary, reflected (PPr, PSr,

SPr, SSr) and transmitted (PPt, PSt, SPt, SSt) waves with wavetype coupling, interface

waves and head waves develop and propagate from the boundary as indicated in Fig.

6.2.

We consider 3 different implementations of the modified approach with different

values of
R
, and compare the resulting seismograms with those for the previous scheme.

In case A we consider use the sum of the two operators Á Û�´� and Á `�´� across the whole

domain. In the other two cases we consider a more localized application of the split

operator. In case B we use 3 grid steps for
R
, and in case C we take the extreme position

where the modified technique is just the row and column of grid points in which the

source are placed.
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Fig. 6.1. Representation of the two-layered medium used for the validation test of the modified WBM. The
domain is 10 � 10 km and a planar internal boundary is placed at depth Ø =4.53 km. The compressional wave
velocity ( ÊÍ ) in the top layer ( �9Í ) is 3.5 km/s, the shear wave velocity ( ËCÍ ) 2.0 km/s, and the density ( Ì�Í ) 2.2� Í'ÎÐÑ Ó . The velocities in the bottom layer ( � � ) are twice of those in the top layer (i.e., Ê � =7.0 km/s, Ë � =4.0
km/s) and the density ( Ì � ) is 3.3

� Í'ÎÐÑ Ó . A vertically directed force is applied at (2.34 km, 2.97 km), and
four artificial boundaries ( [�� Ö [�� Ö [�� Ö [�� ) are treated by absorbing boundary conditions. In order to record
time responses, 8 receivers are deployed at depths Ø Ò 3.75 km ( �9Ï , Ô =1, ß ß ß ,4) and 6.88 km ( Ð}Ï ) from � Ò 2.5
km with constant spacing 1.875 km.
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Fig. 6.3 displays a comparison of the numerical results for the three cases with a

reference solutions calculated with the previous approach. In general, the numerical

results for the cases A and B agree well with reference solutions for the whole wave

trains except for a couple of slight misfits (indicated by the solid arrows in Fig.

6.3). These effects may arise from numerical anisotropy (e.g., Käser & Igel, 2001)

whereby the successive action of operators can have different effects depending on the

order of application and analytically equivalent operators can have different numerical

properties.

Although case C needs much less computational effort, the quality of the time response

is not satisfactory. There are numerically dispersed phases arriving before the first-arrival

phases and some slight misfits among the main phases (marked by broken arrows). The

problem is that the operator is acting on too small a region to achieve accurate results.

The quality of the time response can be assured by applying the modified technique in

a ‘sufficiently-broad localized’ area, i.e., a band of rows and columns including a source

position. Case B satisfies the number of grid points per wavelength needed for the WBM

based on Daubechies-20 wavelets, i.e., 3 grid points, and generates time responses that

match well with the reference solutions.

Also, it is worthy to mention that except for case A the solutions display slight

oscillations after main phases (see, a in the figure). This phenomenon is also related with

the numerical anisotropy which is developed by the transition of numerical schemes in

a limited area. Note that the reference solutions are computed by the previous technique

in Chapter 3 which needs both source-region and main-region schemes. On the contrary,

the case A displays good results. However, the maximum amplitude of the oscillations is

less than 2 % of that of main phases and reduces with time, and thus the oscillations do

not affect wavefields. In the following modellings, we implement the scheme for case A.

6.3 Modelling seismic waves in fault zones

The implementation of a realistic fault source in numerical modelling has been a

challenging issue, and many studies have confined their scope to cases using simple

single body forces (e.g., Igel et al., 2002; Huang et al., 1995). Although some SH studies

based on finite-difference techniques (Vidale et al.,1985; Li & Vidale, 1996) have managed

to incorporate dislocation sources by considering near-field displacement fields with

approximate analytic representations, such dislocation modelling is still difficult for P-

SV waves. An attempt to incorporate dislocation sources in a P-SV wave system by

controlling stress values around a source position has been made by Coutant et al., (1995),

but the proposed scheme is unsatisfactory for accurate modelling. Moreover, since a real
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Fig. 6.3. Comparisons of time responses, for several different versions of the modified WBM with a refer-
ence solution by the previous method described in Chapter 3. The seismograms are recorded at 8 receivers
( �AÏ Ö ÐÑÏ , Ô�Òsà Ö ß ß ß ÖG� ) in Fig. 6.1. Amplified seismograms are provided for the vertical component in ��z
(marked a). Case A applies the modified WBM technique to whole domain, case B to a region three grid
points across around the source point, and case C to a row and a column of grid points including a source
position. Major misfits in the waveforms for case C are indicated by broken arrows, with solid arrows for
other cases. The discrepancies for case C mainly arise from numerical dispersion. Records of Ð Ï are ampli-
fied by 6 for the display.

fault zone is highly heterogeneous it is desirable to be able to implement dislocation

sources, including rupture in realistic modelling.

The fault gouge zone has lowered velocities relative to its surroundings and so is able

to support trapped waves. Such trapping phenomena have been investigated for fault



6.3 Modelling seismic waves in fault zones 87

zones by using 2-D (Li & Vidale, 1996) and 3-D (Graves, 1996) finite-difference codes

or using analytic expressions (Ben-Zion, 1998). The analytic expression for SH-type

fault-zone trapped waves with a unit source have been established by several studies

(e.g., Li, 1988; Li et al., 1990; Li & Leary, 1990; Ben-Zion & Aki, 1990). They demonstrated

shear-waveform variations for 2-D fault zones as a function of the parameters of the

fault zone and the observation pattern, e.g., fault-zone width, velocity structures, relative

source and receiver positions, and attenuation factors; they were able to show clear

development of trapped waves and head waves as features of time responses in fault

zones. The analytical approach demonstrates the presence of the phenomenon but is not

able to handle heterogeneity or more complex geometry. Such effects can however be

examined with numerical methods such as higher-order finite difference technique (e.g.,

Jahnke et al., 2002), which could treat a problem with seismic-wave initiation on material

boundary in a fault zone. However, the finite difference scheme may generate artificially

attenuated seismic waves in media with complex strong heterogeneities (Chapter 7) and

has a difficult in treatment of complicated (non-smooth) source time function. The

WBM is particularly effective in this context because of its capacity to handle strong

heterogeneity, and, as we shall see, is able to include a propagating rupture with

non-smooth source time function within the heterogeneous zone. Note that the WBM

has been shown to preserve energy of seismic waves correctly even in strongly perturbed

media (Chapter 7).

6.3.1 Implementation of dislocation sources

Dislocation sources can be implemented in the WBM through the double-couple force

system based on a moment-tensor ( � ) representation, and the equivalent body force� � # � for the dislocation sources can be expressed as (e.g., Komatitsch & Tromp, 2002;

Ben-Menahem & Singh, 1981)� � # � PNÚ � 3X� µ ��� Ú �/ÛV��� � # �FE (6.3)

where � � # � is the displacement history of a particle on the fault, � the location vector, and�/Û the location of the source, ( 	�Û°Ecd/Û ). Note that �� � # � corresponds to the far-field source

time function and the area under �� � # � is unity (Vidale et al., 1985; Lay & Wallace, 1995).

For an arbitrary fault the moment tensor can be expressed in terms of strike angle ( � ),

dip angle ( h ) and rake angle ( i ) of a fault geometry (e.g., Lay & Wallace, 1995; Kennett,

2001). Six independent components of the moment tensor are given byl Z5Z PNÚ lß>`�KT5U�V�h �xw T�i�T5U�V<S�� K T5U�V<SWhqT5U�V i�T5U�V 6 ���FE
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l b(b P lß>`�KT5U�V�h �xw T�iNT5U�V<S�� Ú T5U�V<SWh T5U�V i �xw T 6 ���FEl XJX P lß>�T5U�V<SWh T5U�V i�El Z�b P l bTZ P lß>��KT5U�V�h �xw T�i �xw TeS�� K T5U�V<SWhqT5U�V i�T5U�V/� �xw T����FE (6.4)l Z°X P l XÂZ PNÚ lß>`� �xw T�h �xw T�i �xw T�� K;�xw TeSWh T5U�V iNT5U�V/���FEl bVX P l X b PÇÚ lß>`� �xw TQh �xw T�i�T5U�V/� Ú:�xw TeSWh T5U�V i �xw T����FE
where the scalar factor lí> corresponds to e Ûçå��� , e Û is the shear modulus in the source

position, å the fault area, and �� the average displacement of fault (fault offset). The

strike angle ( � ) is measured from the north, the dip angle ( h ) from the horizontal plane

normal to d direction, and the rake angle ( i ) from the strike direction on the fault plane.

We consider a thrust fault (i.e., i = Y�o S ) with a dip angle h , which is placed parallel to

E-W direction (i.e., � = Y�o S ). Therefore, the moment tensor is given byl Z5Z PNÚ lß>�T5U�V<SWh]E l XJX P lß>�T5U�V<SWh]E l Z°X PNÚ lß> �xw TeSWh]El b(b P l Z�b P l bVX P . U (6.5)

where, 	 corresponds to east and d is the downward vertical direction. From (6.3) and

(6.5), the equivalent body force for a thrust faulting can be represented as� Z PÇÚI� l Z5Z\W�Z µ ��� Ú �/ÛV� K l Z°XîWYX µ ��� Ú �/ÛV�x�r� � # �FE � b P . E� X PNÚI� l Z°X5W�Z µ ��� Ú �/ÛV� K l XJX5WYX µ ��� Ú �/ÛV�x�r� � # �FU (6.6)

With the assumption that there is no structural variation in the b direction, the fault

source (6.6) can be implemented in 2-D as a 90 � dip-slip fault activated on a vertical

plane ( 	 - d plane). The results for this line source in 2-D can be adjusted to match the

geometrical spreading in 3-D for a point source by convolving seismograms with M/o7� #
and differentiating in time (Vidale et al., 1985; Igel et al., 2002).

Fig. 6.4 displays snapshots of elastic wave propagation in a homogeneous medium

( ` =3.15 km/s, ¾ =1.8 km/s, a =2.2 ��� o�� Ñ ) with 90 � dip-slip on a fault plane. Here a

ramp excitation model (Fig. 6.5) with # � =0.1 s is implemented for the displacement

time function � � # � . Permanent displacements induced by the dislocation are found in a

four-lobed pattern around the source position (N in Fig. 6.4), and diminish with distance

as n @�: . On the other hand, transient displacement activated by propagating elastic waves

falls off with distance as M/o � n (Vidale et al., 1985). Therefore, in the far field, only the

transient displacements are discernible in wavefields.

We are able to simulate the effect of rupture propagation by combining several

dislocation sources with their own source time histories, and model a simple rupture

problem with ramp source time function in Section 6.3.3.
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Fig. 6.4. Snapshots of elastic wave propagation from a 90 � dip-slip fault in a homogeneous medium. Both
permanent displacements (N) and and transient wavefields (P,S) are clearly shown.

6.3.2 Modelling with a point dislocation in a fault zone

We consider a model of a fault gouge zone with significant heterogeneity in a material

with lower wavespeeds than its surroundings and simulate the response from a

dislocation source in the fault zone. A horizontal fault zone ( ��: in Fig. 6.6) with random

perturbation in physical properties (wave velocities, density) is set in a homogeneous

background medium ( �<6 ) where the P wave velocity ( `'6 ) is 3.5 km/s, the S wave velocity

( ¾ 6 ) 2.0 km/s, and the density ( aY6 ) 2.2 ��� o�� Ñ . The average wave velocities in the fault

zone are 2.63 km/s for P waves ( ` : ) and 1.5 km/s for S waves ( ¾ : ), and the average

density ( a]: ) is 1.83 ��� o�� Ñ . A 90 � dip-slip dislocation source is located in the middle
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is set equal to Ð"� .
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Fig. 6.6. Representation of a domain (20 � 20 km) with a perturbed fault zone. The average compressional
wave velocity ( ÊiÍ ) in the fault zone ( �9Í ) is 2.63 km/s, the shear wave velocity ( ËCÍ ) 1.5 km/s, and the density
( Ì Í ) 1.83

� Í'ÎÐÑ Ó . The velocities in the background medium ( � � ) are 3.15 km/s for P ( Ê � ), 1.8 km/s for S
waves ( Ë � ), and the density ( Ì � ) is 2.2

� Í'ÎÐÑ Ó . The perturbation of the fault zone is represented through
a stochastic process such that physical parameters are randomly perturbed with standard deviations of 10
% for the wave velocities and 8 % for the density. A 90 � dip-slip dislocation source is applied at (3.9 km,
4.0 km), and four artificial boundaries ( [�� Ö [�� Ö [�� Ö [�� ) are treated by absorbing boundary conditions. 220
receivers are deployed at Ø =5.5 km ( � Ï , Ô Ò:à Öãâ3Ö¢¡¢¡¢¡ Ö á
á ), Ø Ò 16.9 km ( Ð}Ï ), � Ò 8.59 km ( £�Ï ) and � =16.9 km
( ¤NÏ ) with a constant spacing.

of the fault zone at 	 =3.9 km, d =4.0 km. The thickness of the fault zone is 1.17 km and

the perturbations in the zone are generated from a stochastic representation using a von

Karman autocorrelation function (cf., Sato & Fehler, 1998) with Hurst number 0.25 and

correlation distance 56 m. The wave velocities in the zone have a 10 % standard deviation
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Fig. 6.7. Snapshots of elastic wave propagation in the medium with a horizontal fault zone (see, Fig. 6.6)
with a 90 � dip-slip dislocation source. Multi-reflected phases follow after direct phases (P and S in the figure)
from the source. Also considerable trapped waves ( ¥ ) develop inside the fault zone.

and the density 8 %. More detailed information on the construction of suitable stochastic

media has been discussed in Chapter 7.

Fig. 6.7 displays snapshots of elastic wave propagation in the medium with the fault

zone, at # =3.5 and 9.5 s. Various reflected waves develop inside the fault zone, and parts

of the multi-reflected wavetrain drain continuously into the homogeneous background

medium following after direct phases (P, S in the figure). In particular the P waves

generated inside the fault zone give rise to a multiplicity of SV head waves. Meanwhile,

most of the S waves are trapped in the low-velocity layer in form of over-critically
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Fig. 6.8. Time responses, with conversion to 3-D response, at 110 receivers placed at (a) depth Ø =5.5 ( � Ï in
Fig. 6.6) and (b) 16.9 km ( Ð}Ï ) with an appropriate spreading conversion procedure to the case of a point
source. Multi-reflected phases (Pr,Sr) in the fault zone follow direct waves (P,S). Trapped waves interfere
with random heterogeneities in the fault zone, and leak into the background medium in a form of scattered
waves (Tr).

reflected waves, and so significant energy is transported along the layer ( $ in the figure)

at a fairly slow group speed. The trapped waves on the vertical component are much

larger than those on the horizontal component; this arises from the combination of the

fault zone geometry (i.e., horizontal extension) and slip direction of the fault (i.e., 90 �
dip-slip).

The equivalent 3-D time response for two sets of 110 receivers at 313m spacing, placed

at depths d =5.5 and 16.9 km, are shown in Fig. 6.8. The upper set of receivers is set close

to the fault zone and so emphasises near-field effects, whilst the lower set is dominantly

influenced by the far-field radiation. The onsets of the P arrivals are relatively simple

because they come in ahead of any of the scattered arrivals, but the influence of the
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Fig. 6.9. Time responses, with conversion to 3-D response, for lines of receivers crossing the fault zone illus-
trating the nature of the trapped wave system in the heterogeneous gouge zone (a) at � =8.59 km ( £³Ï in Fig.
6.6) and (b) at 16.88 km ( ¤�Ï ) from the source.

heterogeneity is seen in the significant S arrivals for the 	 component on the upper line

of receivers. The main trapped wave is relatively low frequency, reflecting evanescent

decay outside the fault-zone waveguide, but is accompanied by a higher frequency coda

with complex waveforms from multiple scattering in the fault zone (Tr in the figure). A

distinct complex of scattered energy is seen on the 	 component seismograms for small

offsets from the source location. At larger distances a more coherent set of arrivals follows

S and becomes more distinct for larger offsets.

The nature of the trapped wave phenomena can be most clearly seen in a receiver

profile across the fault zone as illustrated in Fig. 6.9. The lines are set at 4.7 km and

13.0 km from the source. On the closer profile, Fig. 6.9(a), there is still a significant

influence from near-field effects and the main part of the trapped wave train tends to

merge with the direct phases. The heterogeneity in the gouge zone leads to an extended
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coda of back scattered waves on the d component. On the further line, Fig. 6.9(b), the

nature of the trapping phenomena becomes more evident. On the 	 component the fast P

waves in the surrounding material link into the slower P waves in the gouge from which

a significant SV head wave is being shed. The main amplitude on the d component lies

as expected on the S wave and decays exponentially away from the fault zone so that

relatively low frequency energy dominates at the receivers furthest from the fault zone.

A similar pattern was reported in Li & Leary (1990, Figs. 7 and 8). Part of the trapped

waves consists of conversions between P and S and these are again prominent on the d
component. The patterns of arrivals including long dispersed wavetrains behind S are

similar to those recorded from aftershocks of the Hector Mine earthquake in California

(Li et al., 2002) in a similar profile across the fault zone. In this case the concentration

of high frequency arrivals was used as a means of mapping out the location of the fault

zone.

6.3.3 Modelling with rupture propagation

In studies of ground motion in the vicinity of earthquakes it is normally not adequate

to approximate fault sources by a point dislocation source since the radiation patterns

and frequency content of the transient waves are strongly dependent not only on fault

geometry but also on dynamic source process. For instance, Kasahara (1981) showed

that radiation patterns vary with the ratio of rupture velocity to shear wave velocity

in background medium and they are shown to be elongated with increase of rupture

velocity.

For realistic modelling, the source process needs to be considered and a direct

representation of the faulting process is desired. In this section, we introduce a simple

rupture-propagation problem in a fault zone by the superposition of multiple dislocation

sources each of which may have their own displacement time functions along the

rupture-propagation direction in the fault zone. We consider once again the fault gouge

zone model problem of Fig. 6.6 and consider a bilateral propagating rupture initiated at

the same point as the line force location in Section 6.3.2. The rupture velocity is taken

as 0.9 times the shear wave velocity ( ¾ : ) in the fault zone, and the rupture terminates at

a distance 0.43 km (corresponding to 5 grid points) from the origin. We here consider a

simple case in which each segment of the fault has the same particle displacement time

history (the ramp model in Fig. 6.5) and the same amount of energy release (i.e., the

same permanent dislocation at steady state). However, the same approach can readily

be extended to much more complex problems where every segment of fault has own

displacement time history and energy release rate.
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Fig. 6.10. Snapshots of elastic wave propagation in a medium with a horizontal fault zone (Fig. 6.6) with a
propagating 90 � dip-slip rupture. The same magnitude of scalar moment ¦ � as in Fig. 6.7 is considered, and
subsequent dislocations are considered in an area with horizontal extent 0.86 km. The permanent displace-
ment pattern on the � component displays a horizontally extended shape following the rupture direction,
but that on the Ø component is concentrated at the ends of the rupture.

For comparison with the results of the point-dislocation case (Section 6.3.2), we

consider the same magnitude of seismic moment lå> by distributing the magnitude

evenly along the fault plane over the total rupture distance. The general character of

the wavefields seen in the snapshots (Fig. 6.10) are similar to the point-dislocation case

(Fig. 6.7). However, since the energy is released over a time interval at each segment

of the fault, the transient waves exhibit smaller amplitudes and lower frequencies (see

also, Fig. 6.11). Also, we note that there is now a much weaker P disturbance in the fault
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Fig. 6.11. Time responses, with conversion to 3-D response, for the propagating fault problem with 110
receivers placed at depth Ø =5.5 (a) and 16.9 km (b). The traces are amplified by a factor of two compared
with Fig. 6.8. The main phases (P,S,Pr,Sr,Tr) are similar to those for a point dislocation but the frequency
contents of phases are lower than those in Fig. 6.8, since the rupture velocity is lower than the elastic wave
velocities.

zone and consequently much less in the way of S head waves in the surroundings. The

permanent displacement patterns (N in Fig. 6.10) around the fault display horizontal

extension along the fault propagation direction in the 	 components. In contrast the

permanent displacements are concentrated at the end of the rupture on the d component

and are not discernible along the plane of rupture.

The time responses in Fig. 6.11 for the propagating rupture source are displayed with

twice the amplification used in Fig. 6.8. The multiple reflected waves following the S

waves for receivers at short offset on the 	 components for the point dislocation case

(Fig. 6.8) do not appear in the profiles for propagating rupture.

Time responses for lines of receivers crossing the fault zone (Fig. 6.12) display
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Fig. 6.12. Time responses, with conversion to 3-D response, for the propagating fault problem at receivers
crossing the fault zone, (a) � =8.59 km ( £AÏ in Fig. 6.6) and (b) � =16.88 km ( ¤�Ï ) from the source.

long-period wavetrains compared to those of the point dislocation case (Fig. 6.8) since

dislocation energy is distributed on finite segments of fault with time intervals. Trapped

P waves are affected considerably and thus the amplitudes are reduced compared to

those of S waves.

6.4 Modelling in subduction zones

A further region in which sources occur within a zone of heterogeneity is in the coherent

and systematic high velocity zone of the subducting slab. The majority of earthquakes

associated with the subduction zone lie within the slab but relatively close to its upper

surface. Seismic waves generated from such sources within the slab have the potential of

strong interaction with the slab boundaries with reflections and conversions. There is also

the possibility of interface waves associated with the contrasts in properties at the edge
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of the slab. The combination of the effects introduced by the slab can have significant

effects on the local wavefield and also have the potential to modify the high frequency

characteristics for teleseismic propagation.

Waveform and amplitude variations of incident waves propagating through a slab

have been studied at regional distance with both numerical modelling (e.g., Vidale, 1987;

Cormier, 1989; Sekiguchi, 1992) and observational analysis (Lay & Young, 1989). Recently,

wave-guide effects in the accretionary prism above the slab have been investigated

by Shapiro et al. (2000). However, the generation of secondary waves in subduction

zones (such as reflected waves, interface waves) have not received much attention.

Moreover, when waves interfere with a fast-velocity layer placed between low-velocity

layers, it is possible to get tunneling effects (Fuchs & Schulz, 1976; Drijkoningen, 1991),

which depend on the frequency content of the wavefield and the thickness of the layer,

which can contribute to waveform complexity. Thus, low frequency waves with large

wavelength are hardly affected by the presence of the subducting slab but the impact

increases at higher frequencies.

We consider the SH wave case at a regional scale, and show how the WBM method can

be used to handle the presence of a simplified subduction zone embedded in a radially

stratified background model, including secondary wave effects.

The subduction zone structure extends to such a depth that we cannot ignore the

influence of the sphericity of the Earth and so need to adapt the WBM to a non-cartesian

coordinate system. Spherical finite-difference methods have been introduced for the

simulation of SH waves in the mantle (Igel & Weber, 1995; Chaljub & Tarantola,

1997) and P-SV (Igel & Weber, 1996) wave propagation in the sphere. An alternative

approach which remains in 2-D was adopted by Furumura et al. (1998) with a

cylindrical-coordinate representation for P-SV wave equations in modelling using a

pseudospectral method. For a 2-D structure such as a subducting plate, modelling with a

spherical coordinate system, requires the pole axis to be treated by a symmetry condition,

with a vanishing displacement vector on the axis, and thus an additional boundary

condition is needed. To preserve the simplicity of the situation we use cylindrical

coordinates for SH waves with the background radially stratified model based on ak135

(Kennett et al., 1995).
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6.4.1 Numerical implementation

The SH wave equation in a cylindrical coordinate ( n , s , b ) system (cf., Aki & Richards,

1980) takes the form:W 6 [�bW # 6 P Ma c k �n K Wlk �W n K Mn Wlk�§W s K � b f E (6.7)

where the stress terms
k � and

k�§
are given byk � P e W�[�bW n E k�§ P e n W�[�bW s U (6.8)

This set of equations for SH can be recast in the wavelet representation in a similar way

to that in Section 6.2, working with normalised radius.

The traction-free condition at the free surface and the core-mantle boundary (if

applicable) is
k � P . , and this can be implemented as via equivalent forces in ä (3.10).

6.4.2 Validation tests

The accuracy of the wavelet-based method in cylindrical coordinates has been tested with

a variety of models where analytic solutions are available. We illustrate these tests for a

cylinder with small radius where the influence of curvature is strong.

We consider a portion of a uniform cylinder with radius 22 km (Fig. 6.13). Four

artificial boundaries ( Â ¹ EñÂ�ò�EñÂ�ð EñÂ æ ) are treated by absorbing boundary conditions. Four

receivers ( Æ � ,  =1,2,3,4) are placed at depth 3.04 km in a row with interval 1.61 km, and

a line force is applied at a depth of 6.3 km. The numerical model is represented with

128 j 128 grid points, the shear wave velocity is set to be 2.0 km/s, and the density 2.2��� o�� Ñ . A Ricker wavelet with dominant frequency 4.5 Hz is implemented for the source

time function.

As shown in Fig. 6.14, the wavelet-based method generates time responses with correct

travel times and amplitudes for this uniform cylinder case. A barely noticeable high

frequency jitter distinguishes the numerical simulation from the analytical results.

Similar comparison have been made for both the effects of the free surface and layering

for model segments placed at the surface of the Earth so that curvature effects are

minimised. The replication of the analytic results matches that of Fig. 6.14 and so

confirms the accuracy of the cylindrical WBM method. For more complex stratified

models analytic solutions are not available but a strong check on the validity of the WBM

method is provided by the precise match of the wavefront patterns for both shallow and

deep sources.
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Fig. 6.14. Comparisons between analytic solutions and numerical results recorded at four receivers ( � Ï in
Fig. 6.13) in a homogeneous circular medium.

6.4.3 SH waves in subduction zones

6.4.3.1 Wavefronts

The geometry of subducting slabs is approximately two-dimensional, but the velocity

anomalies revealed by seismic tomography indicate that there can be significant

variations along a single subduction zone (e.g., Pankow & Lay, 2002; Kennett, 2002;

Widiyantoro et al., 1999; Ding & Grand, 1994).

Here we implement a simplified slab model based on a recent study (Pankow & Lay,
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Fig. 6.15. Simplified model of a subduction zone with a dip ( © ) of á
ÞX� and thickness ( � ) 40 km. The uniform
slab has a wavespeed set 5% higher than the wavespeed just above the upper boundary and is embedded
in the radially stratified model ak135 (Kennett et al., 1995). Sources are placed at two representative depths:
shallow ( H,Í , Ø =11.88 km) and intermediate-depth ( H � , Ø =149.15 km). Point sources with dominant frequency
1 Hz are introduced near the boundaries of the slab. The four sources lie just below the upper boundary of
the slab (case A), or just above the slab boundary (case B), and in a similar configuration just below the lower
boundary (case C), or just above the boundary (case D).

2002) of shear wave velocity structure in the Kurile subduction zone. We consider a slab

with a dip ( s ) of 50 � and a velocity anomaly raised by 5 % compared to its surroundings

(Fig. 6.15); the properties of the slab are constant across its thickness. The slab is

embedded in the radially stratified model ak135 (Kennett et al., 1995). The thickness ( ~ )

of the slab is taken as 40 km and the velocity anomaly of the slab starts at 0.68 km depth.

Four different positions of the source relative to the slab are considered for both a shallow

source ( ��: in the figure, d =11.88 km) and an intermediate depth source ( �a6 , d =149.15 km)

depths. The four sources lie just below the upper boundary of the slab (case A), or just

above the slab boundary (case B), and in a similar configuration just below the lower

boundary (case C), or just above the boundary (case D).

The different source configurations are achieved by slight rotations of the basic model.

The slab in case B is generated by a rotation of case A clockwise about the center of the

earth by 1.35 km, the slab for case C by rotating counterclockwise by 52.22 km, and finally

the slab for case D by counterclockwise by 50.87 km. The source location is kept fixed so

that direct comparison of the seismograms can be made for free surface receivers. The

source time function is taken as a Ricker wavelet with dominant frequency of 1 Hz. The

domain is represented with 512 j 256 grid points; three domain boundaries ( Â ¹ EñÂ�ò�EñÂ æ )

are treated by absorbing boundary conditions, and the top domain boundary ( ÂTð ) is

considered as a free surface. We consider a slab with a constant relative velocity anomaly

as a means of understanding the effects of slab boundaries on the waveforms and the

systematic deformation of wavefronts due to subduction zones.
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Fig. 6.16. Snapshots of SH wave propagation in the simplified subduction zone model with a shallow source
at � =31.5 s. Major phases in the reference model are direct waves (S), free-surface reflected waves (sS), and
Love waves. The patterns of reflected waves at the upper boundary of slab (Sru, sSru) and at the lower
boundary (Srl,sSrl), depend on the source positions relative to the slab. Interface waves (I) and head waves
(H) develop strongly along the slab boundary closest to the source.

Figs. 6.16 and 6.17 compare snapshots for the four source positions at # =31.5 s for

both shallow source depths and intermediate depth of source. The reference snapshot in

the figure is computed in the radially stratified earth model ak135. The outlines of the

perturbed slab are superimposed on the snapshots to aid in identification of the different

classes of arrivals.

The relative position of the source compared with the upper or lower boundary of the
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Fig. 6.17. Snapshots of SH wave propagation in subduction zones with an intermediate-depth of source at� =31.5 s. The wavefields are simpler than those in Fig. 6.17, but the phases developing on boundaries are
clearly shown to travel into the free surface. The main reflected waves (Sru, Srl), interface waves (I), and
head waves (H) are indicated.

slab does not make significant differences in the wavefields (compare cases A and B, cases

C and D in the figure). However, there are noticeable difference between the snapshots

for sources near the upper boundary (cases A and B) and the lower boundary (cases C

and D), with characteristic patterns of interaction with the boundaries. Even though the

contrast at the slab edge is not large, significant modifications to the wavefield can be

introduced.

For shallow sources ( ��: ) near the upper boundary of the slab (cases A and B in Fig.
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6.16), significant interface waves (I) and reflected waves (Sru, sSru) propagate along the

upper boundary mixed in with or following both the S and sS phases. Weak reflected

waves (Srl, sSrl) can be recognised from their hook shape. The interface waves (I) and

reflected waves (sSru) following sS waves are shown clearly in the 3-D perspective view,

the last snapshot, in the figure.

On the other hand, for shallow sources ( ��: ) near the lower boundary of slab (cases C

and D), reflected waves and interface waves from the lower boundary develop after the

S waves, but there is little interaction with the sS waves which have passed through the

slab on their way to the free surface. Nevertheless, weak reflected waves (sSru) can be

still found after sS waves from the upper boundary (see, case D).

Head wave effects outside the slab (H) are more apparent for cases A and B since they

become detached from reflected waves with both distance and time (see, H in case B).

However, head waves in cases C and D have a less distinct identity (see, H in case C),

because the contrast with the background velocity is less.

For the group of intermediate-depth sources (Fig. 6.17) the wavefront patterns are

relatively simple and the effects of the slab can be transferred updip towards the surface.

Noticeable reflected waves and interface waves develop along the boundary near the

source, and weak reflected waves are generated at the other boundary of the slab. Head

waves surrounding the slab appear in each case.

6.4.3.2 Waveforms recorded at the surface

The influence of the high velocity slab can be clearly seen in the seismograms recorded

at the surface. We use a set of 60 receivers with a spacing of 5.4 km, and enhance the

range of arrivals associated with the presence of the slab by using difference seismograms

between the various cases.

In Fig. 6.18 we show the seismograms for a shallow source for the reference model

and the difference seismograms between the cases A,B,C,D and the reference model. The

general pattern of the wave trains for the reference case is preserved in all cases but

the introduction of a slab leads to travel-time anomalies which depend on the relative

positions of receivers to the source and the slab. The main variations occur on the far

side of the slab from the source position as can be seen in the difference seismograms Fig

6.18(b),(c), the strong contributions arise from the phase shifts induced by the passage

through the slab.

Reflected waves from the upper boundary of slab also play an important role in the

waveform variation in the later part of the wave trains recorded above the slab in a

narrow interval x=-60 to -140 km, Fig. 6.18(b), corresponding to ranges of 80 to 160 km
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Fig. 6.18. Seismograms at the surface for shallow sources in the simplified subduction model. (a) The main
features of the seismograms are well represented by the reference model. The features associated with the
presence of the slab are enhanced by considering difference seismograms. The main features of source
positions at the upper and lower slab boundaries can be seen from (b) reference - case A (upper), (c) reference
- case C (lower). The more subtle differences arising from the position of the source, inside or outside the
slab, are apparent from the difference seismograms (d) case A - case B, and (e) case C - case D. The main
differences arise from the time advance of the waves in the slab models when they pass through the slab.
Reflected arrivals from the upper boundary of the slab are important for sources near the upper boundary,
and are more pronounced for case B where the source lies outside the slab.

from the epicenter. For the source inside the slab (case A) the reflected waves are mainly

generated by sS waves, but for an external source (case B) both S and sS waves contribute

and the amplitude is enhanced (see, Fig. 6.18(b) and (d) for 	 =-100.0 km). For shallow

sources near the lower boundary of slab (cases C,D), the main effect is just the travel time

anomaly caused by introduction of the high-velocity zone (see, Fig. 6.18(c) and (e)).

The waveforms for two locations on either side of the slab are compared in Fig. 6.19.

At 	 =-100 km, the influence of the reflected waves for the upper boundary of the slab
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Fig. 6.19. Comparisons among time responses of models for shallow sources at two representative places
( � =-100, 116.2 km): among (a) reference model, cases A and B and (b) reference model, cases C and D. The
strong influence of passage through the slab is apparent in each case.

can be seen in the modification of the later part of the main pulse, whereas the dominant

influence for the cases C,D is the time shift due to passage through the slab. With the

observation point on the other side of the slab at 	 =116.2 km, there is little difference

from the reference for the sources near the lower boundary (cases C,D) and a bulk shift

of the waveforms for the cases A,B with sources at the upper boundary of the slab.

For an intermediate depth source a rather different pattern of arrivals is produced.

Although the slab offers a fast propagation path, energy is continuously shed from the

high velocity slab into the lower velocity surroundings (note the weakened wavefronts

in the slab in Fig. 6.17). As a result the waves emerging at the surface in the slab zone

are advanced in time but show rather small amplitudes compared with the reference case

(Fig. 6.21 at 	 P 18.9 km).

Intermediate-depth sources implemented around a slab make distinctive variation in

the waveforms (Fig. 6.20) and, in particular, a wave dissipation pattern is observed

at receivers placed above boundaries of slab, depending on the relative position of the

source and the slab boundaries. When the source is close to the upper boundary of the

slab, significant energy as the sum of reflected (case B), refracted (case A) and interface

waves arrives at the side of the upper boundary (Fig. 6.20(b),(d)). That is, a portion

of incident waves are reflected from the upper boundary in the case B, and successive

energy drains from the high-velocity region to low-velocity background media occur in

case A. So, as a result, the wave dissipation appears around both boundaries of slab.

The effect is present in broad ranges around the upper boundary, but only in a narrow



6.4 Modelling in subduction zones 107

30

40

50

60

70

0 40 80 120 160-40-80-120-160

T
im

e 
(s

)

reference

Range (km)

30

40

50

60

70

0 40 80 120 160-40-80-120-160

T
im

e 
(s

)

reference - case A

Range (km)

30

40

50

60

70

0 40 80 120 160-40-80-120-160

T
im

e 
(s

)

reference - case C

Range (km)

(a) (b) (c)

30

40

50

60

70

0 40 80 120 160-40-80-120-160

T
im

e 
(s

)

case A - case B

Range (km)

30

40

50

60

70

0 40 80 120 160-40-80-120-160

T
im

e 
(s

)

case C - case D

Range (km)

(d) (e)

Fig. 6.20. Seismograms at the surface for intermediate-depth sources in the simplified subduction model. (a)
The main features of the seismograms are well represented by the reference model. The features associated
with the presence of the slab are enhanced by considering difference seismograms. The main features of
source positions at the upper and lower slab boundaries can be seen from (b) reference - case A (upper),
(c) reference - case C (lower). The more subtle differences arising from the position of the source, inside or
outside the slab, are apparent from the difference seismograms (d) case A - case B, and (e) case C - case D.

zone at the lower-boundary region. Also, waves which are transmitted through the slab

and recorded at far distances, display reduced amplitudes. Reflected (or refracted) waves

combined with interface waves are recorded on the side of the lower boundary at regional

distances.

A travel time anomaly due to transmission through the slab is found on the opposite

side of slab to the source position (Fig. 6.20(b),(c)). An amplitude anomaly from the

arrivals of reflected (or refracted) waves and interface waves is observed at a narrow

region at 	 =0 to -40 km with implementation of a source around the upper boundary.

Direct transmission through the slab also induces some loss in amplitude due to the

contrasts at the slab boundaries (cases A,B at 	 P 78.3, 116.2 km and cases C,D at 	 P
-29.7, -137.8 km). Reflected waves can contribute to local enhancement of the amplitude

just outside the slab zone (cases A,B at 	 P -29.7 km and cases C,D at 	 P 78.3 km).
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Fig. 6.21. Comparisons of seismograms for intermediate-depth sources at six representative locations ( � =-
137.8, -29.7, 18.9, 56.7, 78.3, 116.2 km): (a) reference model, cases A and B; (b) reference model, cases C and
D. Both amplitude differences and travel time anomalies are displayed in traces with characteristic patterns
depending on the configuration of the source relative to the slab.

6.4.4 Modelling in realistic slab models

We introduce slab models with realistic geometry and investigate variations of

waveforms and wavefields in the models. The models are designed such that the portions

of slabs at near surface bend smoothly and then are extended parallel to the surface.

Also, transitional layers with 2 % velocity contrast to the background media are added

around both boundaries of slabs with 5 % velocity increase. The thickness of the inner

portion of slabs is set to be 40 km as in the simplified slab models, and the thickness of

the transitional layers is 10 km. For comparisons with wavefields in the simplified slab

models, we implement sources with the same position. Note that sources in cases B and

C are placed inside the transitional layers.

In general, wavefronts in the realistic slab models (Fig. 6.22) are similar to those in the

simplified slab models (Fig. 6.17). However, head waves are less discernible and various

reflected waves develop at the boundaries of slabs due to the introduction of transitional
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Fig. 6.22. Snapshots of SH wave propagation in subduction zones with realistic geometrical structures for
an intermediate-depth of source at � =31.5 s. Head waves are not discernible in every case since the velocity
contrasts at the slab boundaries are not large. But, instead, various reflected waves develop at the boundaries
and also the wavefronts are affected by the curvature of the slabs.
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Fig. 6.23. Seismograms at the surface for intermediate-depth sources in realistic subduction models. (a)
reference model, (b) reference - case A, (c) reference - case C, (d) case A - case B, and (e) case C - case D.
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layers with weak velocity contrast. With the curvature of slabs, the wavefronts are

affected by the focusing and defocusing effect.

Significant guided waves in the upper transitional layer in cases A and B which depart

from the slab at the turn are recorded at receivers around 	 =0 km in Fig. 6.23(b), and the

guided energy is larger than that for simple transmission in the simplified slab models

(see, Fig. 6.20(b)). The horizontal layering of the slab at the surface generates a travel time

anomaly in time responses of cases C and D, while the effect is not severe in cases A and

B at regional distances. The differences between cases A & B and cases C & D are similar

to those in the simplified slab models, but the particular patterns recorded at receivers

placed on slab boundaries in Fig. 6.20(d) and (e), are not displayed in Fig. 6.23(d) and (e)

due to the bending in the slab.

6.5 Discussion

The wavelet-based method (WBM) provides an effective means of simulating elastic

wave propagation in heterogeneous media, since it can cope with rapid variations

in physical properties without loss of accuracy. With the improved scheme for

source representation introduced in this paper it is possible to place moment-tensor or

dislocation sources directly in regions of heterogeneity. This enables the WBM to be

used effectively in a variety of problems where significant contrasts in physical properties

occur in the neighbourhood of the source.

In the case of sources within a highly heterogeneous fault gouge zone, we get strong

waveguide effects for P-SV waves, which are modified somewhat when we introduce

a propagating rupture. The fault-trapped waves decay outside the fault zone and the

presence of high frequency energy provides a good guide to the location of the fault zone

itself.

In subduction zones, the slab represents a region of elevated wavespeed compared

to its surroundings. Although propagation along the slab is fast, substantial energy is

shed in an anti-waveguide effect. The contrasts at the boundaries of the slab have the

potential to generate reflected and interface phases that can add to the complexity of the

seismograms for stations in the vicinity of the slab.



7
Scattering of elastic waves in stochastic random media

7.1 Introduction and overview of seismic scattering

7.1.1 Numerical modelling and scattering attenuation

One of the most important topics in regional seismic studies is the influence of scattering

due to material inhomogeneities and anisotropy in the crust and the upper mantle

(e.g., Wu et al., 1994; Nolet et al., 1994). Scattering processes modify both the travel

times and amplitudes of seismic waves. A full representation of scattering phenomena

requires consideration of multiple scattering effects which are difficult to handle. In

consequence attention has focused on single scattering implemented via a first-order

Born approximation for weakly heterogeneous regions (e.g., Wu, 1982; Frankel &

Clayton, 1986)

The single scattering theory is applied mainly to back-scattered and side-scattered

energy and the more complex effects in forward scattering are taken care of by including

a correction for the induced travel-time shift inside a certain angular range around the

propagation direction. The separation between the two different approximation regimes

is made at the ‘minimum (or, cutoff) scattering angle’ (e.g., Roth & Korn, 1993; Sato &

Fehler, 1998; Kawahara, 2002). Estimates of this minimum scattering angle have been

made using numerical modelling of stochastic media in an acoustic approximation or

with a full elastic treatment (e.g., Frankel & Clayton, 1986; Roth & Korn, 1993; Jannaud et

al., 1991; Frenje & Juhlin, 2000). Alternatively estimates of the minimum scattering angle

have been made theoretically for random acoustic media (e.g., Sato, 1984; Kawahara,

2002).

However, there is still some uncertainty as to the appropriate minimum scattering

angle for elastic waves because much of the work has been undertaken in the acoustic

approximation (e.g., Roth & Korn, 1993) or with a scalar wave approach, even for
111
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elastic wave studies (e.g., Frankel & Clayton, 1986). The scattering pattern of elastic

waves is complex and is significantly different from that of scalar waves (Wu & Aki,

1985) due to the inherent characteristics of elastic waves such as wave type coupling,

the radiation patterns in scattering, and complex interferences between the waves. As

a result numerical modelling for elastic waves needs to be compared with theoretical

results for a full understanding of the influence of elastic wave scattering. The minimum

scattering angle, as one of the key factors in single scattering theory, thus needs to be

determined properly and the relation to the acoustic theory explored.

Single scattering theory for 3-D elastic waves has been developed in several

studies. Wu & Aki (1985) compared theoretical scattering coefficients based on

the Born approximation with results derived from observations, and tried to reveal

the characteristics of heterogeneities in the lithosphere. Wu (1989) introduced the

‘perturbation method’ for the scattering of elastic waves in random media, which

considers the scattering waves as the response of the perturbations to the incident waves

in a sense of a radiation problem. Sato & Fehler (1998) followed a similar approach,

but considered an additional important factor, a travel-time correction applied to the

Born approximation in order to determine the correct energy loss during scattering.

They associate the travel-time shift by the fractional-velocity fluctuation due to the long

wavelength component of scattered waves, i.e., waves with wavelength more than twice

that of the dominant frequency. This approach has been used to determine the minimum

scattering angle to be employed in the estimation of scattering attenuation of elastic

waves in 3-D.

It is therefore important to check the theoretical estimates of the minimum scattering

angle match those determined empirically. Although Sato & Fehler’s minimum

scattering angle is supported by some numerical studies (e.g., Roth & Korn, 1993) for the

scalar-wave cases, it has not been fully checked for elastic waves. The numerical studies

of elastic waves (e.g., Frankel & Clayton, 1986) used the theoretical attenuation curve for

scalar waves as the reference curve for determination of the minimum scattering angle.

However, since numerical modelling for 3-D elastic wave propagation is still requires

considerable computational expense to achieve an adequate domain for the assessment

of the scattered energy, we confine our study to 2-D elastic waves.

For 2-D elastic waves, hybrid methods have been used. Fang & Müller (1996)

attempted to formulate the governing equation in a rational form by incorporating two

formulae for scalar waves with both velocity perturbation (e.g., Frankel & Clayton, 1986)

and density perturbation (e.g., Roth & Korn, 1993). The coefficients of each term in the

rational form need to be determined for each stochastic medium by curve fitting to the
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results from numerical experiments. This approach of Fang & Müller is based on the

fundamental assumption that the scattering attenuation pattern of elastic waves is similar

to that of scalar waves for the given stochastic medium (e.g., exponential media for Fang

& Müller’s study) and that the minimum scattering angle ( s�ª<« ¬ ) would be the same for

(20 � ) for both acoustic and elastic waves.

To avoid such assumptions it is important to develop a fully elastic 2-D theory for

the variation of scattering attenuation as a function of normalized wavenumber for 2-D

elastic waves to compare with numerical results, and thereby determine the minimum

scattering angle.

It is very important that we not only have a correct correct derivation and

implementation of scattering theory for comparisons with numerical results, but also

that high accuracy numerical modelling is available for the assessment of the value

of the minimum scattering angle. The finite difference method (FDM) with 4th-order

accuracy in spatial differentiation has been used widely for the modelling in random

heterogeneous media due to the convenience in treatment of numerical models and

simplicity in implementation (e.g., Frankel & Clayton, 1986; Jannaud et al., 1991; Roth

& Korn, 1993; Fang & Müller, 1996; Frenje & Juhlin, 2000; Fehler et al., 2000). However,

Sato & Fehler (1998) have pointed out that derivatives in a FDM scheme are computed

in the sense of an average over some grid points in a domain. It is still therefore an open

question as to whether the 4th-order accuracy in spatial differentiation is sufficient for

stable and accurate modelling in random heterogeneous media.

High accuracy in spatial differentiation can be achieved with the pseudospectral

method, and this approach has been applied in seismic wavefield computation for

laterally heterogeneous models on upper mantle and global scales (Furumura et al., 1999).

However, it is difficult to achieve a comparable level of accuracy in the representation of

the free-surface condition of vanishing traction. Yomogida & Benites (1995) have applied

the boundary integral method for modelling media with randomly distributed cavities.

Such boundary integral methods can deal well with heterogeneities inside a medium

with irregular interfaces (e.g., cavities, cracks. The boundary conditions are satisfied

by including effective sources at the boundaries at each time step. For a homogeneous

medium it is possible to get an accurate time response because the necessary Green’s

functions can be found analytically. However, it is difficult for the method to be applied to

media with heterogeneous backgrounds (including layered media) because the Green’s

functions themselves need to be found numerically. Recently, the generalized screen

propagators (GSP) method has been developed as a fast computational procedure for

modelling of elastic wave propagation in half spaces with small-scale heterogeneities
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(Wu et al., 2000). However, the approach used in the GSP method ignores the

backscattering process and so is not suitable for full representation of scattered waves.

We use the wavelet-based method (WBM) as an accurate and stable simulator of elastic

wave propagation in random media. The accuracy and the stability of the method is

addressed through comparisons with the FDM. The WBM is then applied to calculate

synthetic seismograms for several styles of stochastic media, from which the scattering

attenuation is measured. The nature of the scattering needs to be taken into account to

get accurate estimates of the attenuation, since in large-scale heterogeneity significant

deviations in the primary wave field mean that both components of motion need to be

considered for a 2-D medium. With accurate modelling we are able to place constraints

on the minimum scattering angle for 2-D elastic waves to the span 60-90 � .
7.1.2 Scattering attenuation of elastic waves

Seismic attenuation is a well-known feature associated with wave propagation in the

earth, and many studies of field data have tried to resolve the magnitude of apparent

attenuation rates in various regions (e.g., Tselentis, 1998; Chung & Sato, 2001; Yoshimoto

et al., 1998; Adams & Abercrombie, 1998; Hatzidimitriou, 1995).

The total attenuation rates are determined by the contributions from scattering ( � @�:Û )

and intrinsic attenuations ( � @�:� ). The intrinsic attenuation is related to the physical and

chemical nature of the media, for example, the rock type (Assefa et al., 1999), the material

state (Del Pezzo et al., 1995), and temperature (Roth et al., 2000). Also, the thermoelastic

effect, the irreversible conversion of kinetic energy to heat flow, causes anelasticity in the

earth (Frankel et al., 1990; Aki, 1980). Such effects may lead to variation of attenuation in

the earth with depth (e.g., Menke et al., 1995; Tselentis, 1993; Der, 1998; Flanagan & Wiens,

1998). Tectonic activity is responsible for large attenuation in tectonic regions (Sarker &

Abers, 1998; Frankel et al., 1990).

However, it has been reported that the scattering attenuation is usually the dominant

factor in seismic attenuation in the crust (e.g., Hatzidimitriou, 1994; Del Pezzo et al.,

1995). Even when the intrinsic attenuation is comparable to the scattering attenuation,

the intrinsic attenuation appears to vary with the scattering attenuation in many regions

(e.g., Mayeda et al., 1992). Thus, a precise estimation of scattering attenuation variation

allows an understanding of seismic attenuation patterns in the crust.

Field-data analysis has usually been focused on obtaining apparent attenuation factors,

but there are few studies characterizing the heterogeneities in terms of stochastic

random processes. Thus, it is still uncertain which type of stochastic random model

can adequately represent the nature of the real crust and which level of variation can
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reproduce the heterogeneities of the crust. Through comparisons of scattering effects

between field data and synthetic data, it may be possible to provide reference stochastic

random models for specific areas. In which case, the models can be used for fundamental

studies on the seismic signatures in the areas, such as the duration of coda waves

and their spectral composition, through numerical modelling. Such synthetic studies

on scattering attenuation may also allow the understanding of effects of anisotropic

materials (e.g., Adam & Abercrombie, 1998). For this purpose, we need to be able to

characterise the scattering attenuation and the properties of stochastic random model,

which can be achieved by considering the theoretical scattering behavior validated by

seismic responses.

Although the ultimate goal is to understand scattering in 3-D, we are able to use 2-D

simulations to good advantage because 3-D scattering effects are quite similar to 2-D

(Frenje & Juhlin, 2000). Further we can make a more effective investigation of coupling

between phases and energy partition. The theoretical expressions for attenuation in 3-D

(Sato & Fehler, 1998) require 3-D integrations, resulting in multiple 2-D integrations,

over propagation angles to describe the dependency of coupled phases such as SP, PS

on scattering angle due to geometrical complexity of heterogeneities. The corresponding

expressions are simpler in 2-D and may be more readily compared to numerical results.

Although the absolute magnitude of energy losses due to scattering may be different

between 2-D and 3-D cases, the scattering attenuation ratios are expected to be consistent

in both cases.

In order to make the theoretical scattering attenuation forms based on a single

scattering theory (first-order Born approximation) comparable to the results from seismic

data which associate a travel-time shift with the perturbation of physical parameters, it is

required to eliminate the contribution of forward scattering within a minimum scattering

angle when computing theoretical attenuation rates. Therefore, it is so important

to determine the minimum scattering angle correctly for the implementation of the

theoretical expressions to seismic quantitative studies.

We formulate the theoretical 2-D scattering attenuation variation for P and S waves,

and compare them with numerical results. Artificial attenuation may be incorporated

from the modelling technique due to limitation of the accuracy in spatial differentiations

of perturbed wavefields, and thus we implement a wavelet-based method, which retains

high accuracy and stability even in highly heterogeneous media, for the numerical

modelling in this study.

The theoretical attenuation curves for S waves are compared with four different types

of stochastic random models: von Karman with Hurst number � =0.05, 0.25, exponential
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and Gaussian random media. We display the scattering attenuation patterns of elastic

waves by comparing the theoretical curves for P and S waves in terms of wavenumber or

frequency. The estimated attenuation ratios are compared with the reported results from

field-data analysis, and we present the properties of stochastic random media in terms of

scattering attenuation rates.

7.2 WBM as a tool for obtaining synthetic data in seismic quantitative studies

We now consider some aspects of numerical modelling to display the efficiency of the

WBM as a simulator of elastic wave propagation in random media. In every numerical

method, to achieve accurate and stable results without numerical dispersion requires the

size of the grid steps to depend on the frequency content of source time function and

the wave velocities in the medium. In particular, the number of grid points needed for

the smallest expected wavelength expected in the media will determine the size of the

required grid and the consequent computational effort. Hence the number of grid points

per wavelength is often used to present the efficiency of given method as a numerical

simulator (e.g., Komatitsch & Vilotte, 1998). The 4th-order FDM requires at least 10

grid points per wavelength in models with strong impedance contrast between layers

(Shapiro et al., 2000), while WBM using Daubechies-20 wavelets needs 3 grid points

per wavelength (see, Section 3.9). These grid steps are sufficient to produce stable and

accurate results in simple media. However, it is necessary to check if such methods can

generate accurate responses in complex media such as random media. In complex media

we expect sharp changes in physical parameters between grid points and so resolution

of physical changes is an important issue, as well as the accuracy of differentiation.

We first consider the process of differentiation in a random medium and then present

examples of WBM modelling in the presence of very strong heterogeneity. In a random

medium we can expect strong variations in properties and we can simulate the effects by

taking discrete samples of a rapidly varying function
� �
	�� on 1-D domain 	 . Where, e.g.,� �
	�� can be considered as a displacement field combined with highly perturbed Lam ®

coefficients (e.g., Ù [eZ ) in the media. We use the functional form (Fig. 7.1(a)):� �
	�� P 	 Ñ T5U�V}�
	 � 	�� ®°¯�± W Ú 	 S [ E (7.1)

and the analytic derivative
� q �
	�� is (Fig. 7.1(b))� q �
	�� P Ò S 	�²� �xw TI�
	 � 	�� ®°¯�± W`Ú 	 S [ K � Ò 	 6 Ú MS 	 Ñ �CT5U�V}�
	 � 	�� ®°¯�± W`Ú 	 S [ E (7.2)

where
. �=	 � S . and 	 corresponds to the dimensionless distance in the domain. For the

numerical differentiation, we implement both the 4th-order FDM and the WBM. When
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Fig. 7.1. Comparison of the accuracy of differentiation between the 4th-order finite difference method (FDM)
and the wavelet-based method (WBM): (a) highly varying input signal which corresponds to the variation of
physical parameters in random media and (b) numerical results which show that the 4th-order FDM exhibits
the attenuated results for the derivative but WBM generates the very accurate results even when the number
of discretization points for the input signal is decreased to 64.

the signal
� �
	�� is considered on a sufficiently dense grid system (e.g., number of grid

points i Z =256, grid step µ 	 =0.0781), both numerical estimates of the derivative (
� q �
	�� )

are apparently coincident with the analytical solution. However, for a sparser grid system

with i Z =64 ( µ 	 =0.3125), the derivative estimates from the FDM exhibit attenuated

amplitudes while WBM generates correct responses. This example of the differentiation

of
� �
	�� on the sparse grid system would correspond physically to the situation of a

medium with high fractional fluctuation or where diverse strong heterogeneities are

present in a given area. Thus, FDM may generate attenuated results for fine-scale

heterogeneities or when a high fractional fluctuation is considered in the random media.

This phenomenon has previously been reported in a study based on FDM for

modelling in random media; Jannaud et al. (1991) have shown that the measured

scattering attenuation rates exhibit high attenuation relative to the theoretically expected

rates when a high fractional fluctuation is considered in the random media ( ³ =10, 20 %

in their study). However, there was good agreement between numerical and theoretical

results for the case of a weakly perturbed medium ( ³ =4 %). In the presence of high levels

of fluctuations the smoothness assumptions underlying the FDM forms of the numerical

operators for differentiation break down, with the result that artificially attenuated

wavefields are produced. The WBM, on the other hand, considers the differentiation

of the whole data at all grid points through wavelet decomposition on a set of spaces

(i.e., the variations of high frequency content and low frequency content are handled
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Fig. 7.2. Representation of (a) a pointwise random heterogeneous medium with a standard deviation of
velocity perturbation of 20% and (b) a stochastic random heterogeneous medium generated by von Karman
ACF with the Hurst number ( ¾ ) of 0.25, a correlation distance of 100 m and a standard deviation of velocity
perturbation of 52%.

in separate spaces but at the same time), and therefore retains accuracy throughout the

domain without accumulating numerical errors across the grid.

As a further demonstration of the efficacy of the WBM we consider the stability of the

calculations for highly perturbed media. For this test, two kinds of models with high

velocity perturbations are considered; a pointwise random medium (Fig. 7.2 (a)) where

wave speeds vary randomly with the Gaussian probability distribution with a standard

deviation of velocity perturbation of 20 % and a systematic random media generated by

von Karman autocorrelation function (ACF) with a Hurst number ( � ) of 0.25 (Fig. 7.2

(b)), a correlation distance of 100 m and a standard deviation of velocity perturbation of

52 %. The maximum value of the velocity perturbations reach 98 % for the pointwise
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Fig. 7.3. Time responses of displacement at the free surface receivers for the highly perturbed models shown
in Figure 7.2): (a) the pointwise random medium and (b) the stochastic random medium.

medium and 92 % for the von Karman medium. For such high levels of perturbation, the

conventional FDM is subject to strong dispersion in the numerical results (Roth, 2001).

The reference P and S wave speeds for the WBM calculation are 3.5 and 2.0 km/s, and

a vertically directed force is applied at depth 1500 m in a M . j�� Á � 6 domain. 42 receivers

deployed at the free surface collect the time responses. Despite the large variations in the

physical parameters, the WBM generates stable time responses with large coda waves

following the main phases for both the pointwise and stochastic random heterogeneous

media (Fig. 7.3). Since the scattering effects depend on both the frequency content

of source time function and the scale of heterogeneities, the coda waves in pointwise

random media are smaller than those in the stochastic random media.

These two experiments, demonstrate that the WBM can generate accurate and stable
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results in even strongly heterogeneous random media. We are therefore able to undertake

the simulation of elastic wave propagation in different styles of random heterogeneous

media and measure the scattering attenuation factors by assessing the scattered energy.

7.3 Theoretical scattering attenuation of elastic waves

7.3.1 P-wave incidence

We estimate the scattering attenuation factors ( � @�:´ ) as a function of normalized

wavenumber ( « � ) based on single scattering theory in 2-D random heterogeneous media,

where « is the wavenumber of incident waves and
�

the correlation distance.

We represent the wavefield (
[ � ,  P 	aEcd ) as composed of primary waves (

[ >� ,  P 	aEcd )
and scattered waves (

[ Û� ,  íP 	aEcd ). The primary waves in 2-D elastic media satisfy the

relationshipsa�> W 6 [ >ZW # 6 P Wlk >Z5ZW 	 K Wlk >Z°XW d E a�> W 6 [ > XW # 6 P Wlk >Z°XW 	 K Wlk >XJXW d E (7.3)

wherek >Z5Z P � Ùe> K S e >°� W�[ >ZW 	 K Ùe> W�[ >XW d E k >XJX P Ùe> W�[ >ZW 	 K � Ùe> K S e >°� W�[ >XW d Ek >Z°X P e > c W�[ >ZW d K W�[ >XW 	�f E (7.4)Ùe> and e > are Lamé coefficients, and aY> is the density in the background medium.

When vertically incident ( d -axis direction) plane P waves (Fig. 7.4) are considered as

the primary waves, they are represented as[ >Z P . E [ > X P§¦ � « ¨Fµ X @�¶ ¨ ¯ E (7.5)

where " is the angular frequency, «�· the wavenumber of incident P waves ( "�o `'> ), and `�>
the background P velocity. The scattered waves can be represented using body forces

� Û�
( yP 	aEcd or 1,2) arising from the scattering effects of the variation of physical parameters,a�> W 6 [ ÛZW # 6 Ú Wlk ÛZ5ZW 	 Ú Wlk ÛZ°XW d P � ÛZ E a�> W 6 [ ÛXW # 6 Ú Wlk ÛZ°XW 	 Ú Wlk ÛXJXW d P � ÛX U (7.6)

The body forces
� Û� in (7.6) can be found from the primary waves and the fluctuation of

physical parameters as (cf. Sato & Fehler, 1998, eq. (4.35))� ÛZ PNÚÀ� «�· WW 	 � µ Ù�� [ > X E � ÛX PNÚ � « 6· �K` 6> µ a Úíµ Ù Ú S µ e � Kå� «�· WW d � µ Ù K S µ e � �y[ >X U (7.7)

From empirical studies (e.g., Shiomi et al., 1997; Birch, 1961) on the perturbations of

elastic wave velocities and mass density in real media which display a linear relationship

among the parameters, we can represent the perturbations concisely in general by
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Fig. 7.4. The scattering of the primary incident waves at the scatterer ¸x¹ , a part of the whole heterogeneous
area ¹ . © is the scattering angle from the incident direction of primary waves along the Ø axis. º , º7» are the
location vectors for the receiver and a scatterer. ¼ links the scatterer to the receiver.

introducing a fractional-fluctuation term h®�
	aEcdY� as (e.g., Sato & Fehler, 1998, Section 4.2.2;

Roth & Korn, 1993)h®�
	aEcdY� P µ ``�> P µ ¾¾ > P Má µ aa�> E (7.8)

where `�> is the P wave velocity in the background medium, ¾ > the S wave velocity, andá is a constant which controls the magnitude of the density fluctuations. Hereafter we

use symbols without the subscript 0 to represent the background medium to simplify the

mathematical expressions. The equation (7.7) can be rewritten from (7.8) as� ÛZ PNÚÀ� «�·,` 6 a � ´: W hW 	 ®°¯�± � � �ã«�·]d Ú " # � � E� ÛX P c S « 6· ` 6 a�h Úß� «�·*` 6 a � ´6 W hW d f ®°¯�± � � �ã«�·]d Ú " # � � E (7.9)

where � ´: and � ´6 are constants given by� ´: P � á K S�� c M Ú S ¾ 6` 6 f E � ´6 P á K S1U (7.10)

The solution of
[ Û� ( mP 	aEcd or 1,2) in (7.6) can be expressed using the Green’s function
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in the frequency domain, ½ � ¨ �j¾ïE¢¾ q � and body forces by an integral over the area of

heterogeneity ¿ as (e.g., Roth & Korn, 1993)[ Û� �j¾�� P 6»¨ ½ : ª�À � Û¨ �j¾ q � ½ � ¨ �j¾ïE¢¾ q � p ¿}�j¾ q �FE  LPàM ETS1U (7.11)

The Green’s function ( ½ � ¨ ,  E(« PàM ETS ) for 2-D elastic wave equations (7.3) for a vertically

directed point force can be written as (Burridge, 1976, p115)

· ½ :´6½�6J6 ¿ P MÕ Y a n 6 · � S # 6 Ú n 6 o ` 6 ��T5U�V s �xw T�s# 6 �xw T 6 s Ú � # 6 Ú n 6 o ` 6 ��T5U�V 6 s ¿ �å� #�Ú n o `��
È # 6 Ú n 6 o ` 6

K MÕ Y a nÌ6 · � Ú S # 6 K n 6 o ¾ 6 �CT5U�V/s �xw T�s# 6 T5U�V 6 s Ú � # 6 Ú n 6 o ¾ 6 � �xw T 6 s ¿ �å� #�Ú n o ¾ �È # 6 Ú nÌ6 o ¾ 6 E (7.12)

where s is the angle between vertical axis ( d ) and wave propagation direction and �å� # �
is the Heaviside step function. In this case, the far-field P and S waves can be written

simply as

· ½ ´ :´6½ ´ 6J6 ¿ P �xw T�sÕ Y ` 6 a · T5U�V s�xw T�s ¿ �å� #�Ú n o `��
È # 6 Ú n 6 o ` 6 E (7.13)

and · ½ÂÁ :´6½ÂÁ6J6 ¿ P T5U�V sÕ Y ¾ 6 a · Ú��xw T�sT5U�V s ¿ �å� #�Ú n o ¾ �È # 6 Ú n 6 o ¾ 6 U (7.14)

We can replace �å� #�Ú n o×Ê � o§È # 6 Ú � n o×Ê � 6 in (7.13) and (7.14) with the zeroth-order

Hankel function of the first kind ( � « : ¯> ) by using the Fourier transform ( Ã ) as (cf., Kennett,

1983, ch.7; Aki & Richards, 1980, ch.6)Ã n �å� #�Ú n o×Ê �È # 6 Ú � n o×Ê � 6 p P��ãY � « : ¯> � " n o×Ê �FE (7.15)

where # | n o×Ê , " is angular frequency and Ê is a wave velocity. We introduce the

wavenumbers of P and S waves as «�· and «�Ä and write n for Ý ¾ Ú ¾ÅqÔÝ (Fig. 7.4), to simplify

(7.13) and (7.14) to the form

· ½ ´ :´6½ ´ 6J6 ¿ P � �xw T�sÕ ` 6 a � « : ¯> �ã«�·�Ý ¾ Ú ¾ q ÝÞ� · T5U�V s�xw T�s ¿ E (7.16)

and · ½ Á :´6½ Á6J6 ¿ P � T5U�V sÕ ¾ 6 a � « : ¯> �ã«�Ä�Ý ¾ Ú ¾ q ÝÞ� · Ú��xw T�sT5U�V s ¿ U (7.17)

We assume that the receiver is far away from the scatterers (i.e. Ý ¾�ÝrÆ Ý ¾@q´Ý ; e.g., Roth &

Korn, 1993), and then we can use the asymptotic expansion of Hankel function (Arfken,
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1985, p618) and approximate M/o Ý ¾ Ú ¾ÅqÔÝ by M/o Ý ¾�Ý and Ý ¾ Ú ¾ÇqÔÝ by Ý ¾�Ý ÚÉÈ 3 ¾Çq where È is the

unit vector in ¾ direction. The approximate Green’s functions take the form

· ½ ´ :´6½ ´ 6J6 ¿ P �Õ ` 6 a SY «�·aÝ ¾�Ý ®°¯�± � � �ã«�·aÝ ¾�Ý Ú «�· È 3 ¾ q Ú Y Õ � ¤ · T5U�V s �xw T�s�xw T 6 s ¿ E (7.18)

and · ½ Á :´6½ Á6J6 ¿ P �Õ ¾ 6 a SY «�Ä�Ý ¾�Ý ®°¯�± � � �ã«�Ä�Ý ¾�Ý Ú «�Ä È 3 ¾ q Ú Y Õ � ¤ · Ú T5U�V s �xw T�sT5U�V 6 s ¿ U (7.19)

The Green’s functions for far-field P and S waves for a horizontally directed force can

be obtained in the same way. We can therefore make a compact representation of the

far-field Green’s functions as½ ´� ¨ P �Õ ` 6 a SY «�·aÝ ¾�Ý ®°¯�± � � �ã«�·aÝ ¾�Ý Ú «�· È 3 ¾ q Ú Y Õ � ¤ å ´� ¨ �Ês��FE½ Á� ¨ P �Õ ¾ 6 a SY «�Ä�Ý ¾�Ý ®°¯�± � � �ã«�Ä�Ý ¾�Ý Ú «�Ä È 3 ¾ q Ú Y Õ � ¤ å Á� ¨ �Ês��FE (7.20)

where å ´� ¨ �Ês�� and åËÁ� ¨ �Ês�� are given byå ´ :J: �Ês�� P T5U�V 6 s1E:å ´ :´6 �Ês�� P T5U�V s �xw T�s1E:å ´ 6F: �Ês�� PNÚ T5U�V s �xw T�s1E:å ´ 6J6 �Ês�� P+�xw T 6 s1Eå Á :J: �Ês�� P+�xw T 6 s1E:å Á :´6 �Ês�� PNÚ T5U�V s �xw T�s1E:å Á6F: �Ês�� P T5U�V s �xw T�s1E:å Á6J6 �Ês�� P T5U�V 6 s1U (7.21)

The primary waves (P waves in this study) generate both scattered P and scattered S

waves at the boundaries of heterogeneities due to wavetype coupling, and therefore the

total scattered wavefield
[ Û� can be represented as a sum of scattered P and S waves (

[ ´Ç´� ,[ ´ Á� where  yP 	aEcd or 1,2). From (7.9), (7.11), (7.18) and (7.19),
[ ´Ç´� and

[ ´ Á� are given by[ ´Ç´� P «�·À Y Ý ¾�Ý ®°¯�± � ÚÀ� � " #�Ú «�·aÝ ¾�Ý K Y Õ � ¤ 3 � � ´: å ´� : �Ês�� ª À W hW 	 ¦ � ¨Fµ « X @3ÌDÍ Î » ¯ p ¿}�j¾ q �K S � «�·,å ´� 6 �Ês�� ª�À h ¦ � ¨Fµ « X @3ÌDÍ Î » ¯ p ¿}�j¾ q � K0� ´6 å ´� 6 �Ês�� ª�À W hW d ¦ � ¨Fµ « X @3ÌDÍ Î » ¯ p ¿}�j¾ q � � E (7.22)

and [ ´ Á� P «�· ¸ ÑÀ Y Ý ¾�Ý ®°¯�± � ÚÀ� � " #�Ú «�Ä�Ý ¾�Ý K Y Õ � ¤ 3 � � ´: å Á� : �Ês�� ª À W hW 	 ¦ � ¨Fµ « X @�ÏWÌDÍ Î » ¯ p ¿}�j¾ q �K S � «�·,å Á� 6 �Ês�� ª À h ¦ � ¨Fµ « X @�ÏWÌDÍ Î » ¯ p ¿}�j¾ q � Kr� ´6 å Á� 6 �Ês�� ª À W hW d ¦ � ¨Fµ « X @�ÏWÌDÍ Î » ¯ p ¿}�j¾ q � � E (7.23)

where we have written ¸ for ` o ¾ .

The integrals in (7.22) and (7.23) can be simplified by using integration by parts to yield[ ´Ç´� P�� « Ñ·À Y Ý ¾�Ý�Ð � ´: å ´� : �Ês��CT5U�V/s K S_å ´� 6 �Ês�� Kr� ´6 å ´� 6 �Ês��î� �xw T7s Ú9M �xÑ
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j ®°¯�± � ÚÀ� � " #�Ú «�·aÝ ¾�Ý K Y Õ � ¤ ªQÀ h ¦ � ¨Fµ « X @3ÌDÍ Î » ¯ p ¿}�j¾ q �FE (7.24)

and [ ´ Á� P�� « Ñ· ¸ ÑÀ Y Ý ¾�Ý�Ð � ´: å Á� : �Ês�� ¸ T5U�V s K S_å Á� 6 �Ês�� Kr� ´6 å Á� 6 �Ês��î� ¸P�xw T�s Ú9M �xÑ
j ®°¯�± � ÚÀ� � " #�Ú «�Ä�Ý ¾�Ý K Y Õ � ¤ ª À h ¦ � ¨Fµ « X @�ÏWÌDÍ Î » ¯ p ¿}�j¾ q �FU (7.25)

In this far-field approximation, the scattered P and S waves can be isolated on a single

component (radial or tangential) by rotation of the coordinate axes (e.g., Sato & Fehler,

1998):[ ´Ç´� P T5U�V s [ ´Ç´Z K;�xw T�s [ ´Ç´XP�� « Ñ·À Y Ý ¾�Ý � ´� �Ês�� ®°¯�± � ÚÀ� W " #�Ú «�·aÝ ¾�Ý K Y Õ [ ¤ ª À h ¦ � ¨Fµ « X @3ÌDÍ Î » ¯ p ¿}�j¾ q �FE[ ´ Á¨ P+�xw T�s [ ´ ÁZ Ú T5U�V s [ ´ ÁX (7.26)P�� « Ñ· ¸ ÑÀ Y Ý ¾�Ý � ´¨ Ð��Ês�� ®°¯�± � ÚÀ� W " #�Ú «�Ä�Ý ¾�Ý K Y Õ [ ¤ ª À h ¦ � ¨Fµ « X @�ÏWÌDÍ Î » ¯ p ¿}�j¾ q �FE
where � ´� �Ês�� and � ´¨ �Ês�� are� ´� �Ês�� P T5U�V s Ð � ´: å ´ :J: �Ês��CT5U�V/s K S_å ´ :´6 �Ês�� Kr� ´6 å ´ :´6 �Ês��î� �xw T7s Ú9M �xÑK¯�xw T�s Ð � ´: å ´ 6F: �Ês��CT5U�V"s K S_å ´ 6J6 �Ês�� Kr� ´6 å ´ 6J6 �Ês��î� �xw T7s Ú9M �xÑ<E� ´¨ �Ês�� P+�xw T�s Ð � ´: å Á :J: �Ês�� ¸ T5U�V s K S_å Á :´6 �Ês�� Kr� ´6 å Á :´6 �Ês��î� ¸¦�xw T�s ÚÅM � ÑÚ T5U�V/s Ð � ´: å Á6F: �Ês�� ¸ T5U�V s K S_å Á6J6 �Ês�� Kr� ´6 å Á6J6 �Ês��î� ¸P�xw T�s Ú9M � Ñ U (7.27)

To extract the average scattered energy, we consider an ensemble average over different

realizations of the stochastic medium for the displacement terms:Ò Ý [ ´Ç´� Ý 6KÓ P « Ñ·À Y Ý ¾�Ý � � �\�Ês�� � 6j ª À ª À Ò h®�j¾ q �Ôh®�jÕ q � Ó ®°¯�±×Ö � «�· Ð�Ø X 3 �j¾ q Ú Õ q � ÚÙÈ 3 �j¾ q Ú Õ q � Ñ�Ú p ¿}�j¾ q � p ¿}�jÕ q �FEÒ Ý [ ´ Á¨ Ý 6�Ó P « Ñ· ¸ ÑÀ Y Ý ¾�Ý � � ¨ �Ês�� � 6 (7.28)

j ª À ª À Ò h®�j¾ q �Ôh®�jÕ q � Ó ®°¯�±×Ö � «�· Ð�Ø X 3 �j¾ q Ú Õ q � Ú ¸ÅÈ 3 �j¾ q Ú Õ q � Ñ�Ú p ¿}�j¾ q � p ¿}�jÕ q �FE
where Ø X is the unit vector for the d axis direction. Following the procedure for scalar

waves (e.g., Frankel & Clayton, 1986; Roth & Korn, 1993), we can rewrite (7.28) using the

power spectral density function Û �ã«]� for the heterogeneity asÒ Ý [ ´Ç´� Ý 6KÓ P « Ñ· ¿À Y Ý ¾�Ý � � �\�Ês�� � 6 Û o S «�·hT5U�V s Sp E
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Fig. 7.5. The determination of the minimum scattering angle for S waves ©XÜDÝÞ�ß à in terms of ©xÜDÜÞ�ß à using Snell’s
law. P wave is incident with angle � Ü to the normal to the surface of heterogeneity and the PP scattered
wave is reflected at the surface with angle ©KÜDÜÞ�ß à to the incident direction ( Ø -axis direction in this study). The
PS scattered wave is reflected on the surface with angle � Ý to the normal and ©�ÜDÝÞ�ß à to the incident direction.Ò Ý [ ´ Á¨ Ý 6�Ó P « Ñ· ¸ Ñ ¿À Y Ý ¾�Ý � � ¨ �Ês�� � 6 Û � «�· È MvKß¸ 6 Ú S ¸Õ�xw T�s ¤ U (7.29)

The derivation of (7.29) from (7.28) is described in detail in Appendix B. The loss factor

for scattering attenuation � @�:´ corresponds to the energy loss per unit area divided by the

solid angle ( S Y ) and wavenumber, and so we can express � @�:´ in terms of the standard

deviation ( ³ ) of velocity fluctuation in the 2-D media by

� @�:´ P ³ 6S Y ¿«�· ª § Ð Ò Ý [ ´Ç´� Ý 6�Ó K Ò Ý [ ´ Á¨ Ý 6�Ó Ñ pâá E (7.30)

where
á

is the arc length through which scattered waves propagate, so that
pâá

is given

by n p s (Frankel & Clayton, 1986).

An approximation for the scattering loss factor � @�:´ can be made by restricting the

angular range over which the single scattering theory is applied. For an angular span

( �ãsXª<« ¬ ) about the forward direction we represent the true multiple scattering effects

via a travel-time correction. Since the scattered angles of PP and PS waves from a

heterogeneity are different, we introduce s ´Ç´ª<« ¬ for the P-wave type scattering and s ´ Áª<« ¬ for

the S-wave type scattering. Then we can represent � @�:´ with the approximate travel-time

correction as

� @�:´ P n ³ 6S Y ¿«�· ç ª 6¢ä�@ § ÜDÜÞ�ß à§ ÜDÜÞ�ß à Ò Ý [ ´Ç´� Ý 6KÓ p s K ª 6¢ä�@ § ÜDÝÞ�ß à§ ÜDÝÞ�ß à Ò Ý [ ´ Á¨ Ý 6�Ó p s é U (7.31)

When Ý ¾�Ý is large enough, we can assume Ý ¾�ÝUå n . Also, s ´ Áª<« ¬ can be represented in

terms of s ´Ç´ª<« ¬ by using the Snell’s law; for PP scattered waves reflected with the minimum

scattering angle s ´Ç´ª<« ¬ from the boundary of heterogeneity, the corresponding reflection
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angle of PS scattered waves can be calculated for single scattering as (see, Fig. 7.5)s ´ Áª<« ¬ P s ´Ç´ª<« ¬ K �D ´ Ú  Á �FE æèç ®�ék®  ´ P Y,Ú s ´Ç´ª<« ¬S EÀ Á P T5U�V @�: c T5U�V  ´¸ f U (7.32)

Therefore, when we set �D ´ Ú  Á � to be �y , the approximate relationship between � @�:´
and «�· � for elastic waves is given with implicit dependence on

�
through Û by� @�:´³ 6 P « 6·� Õ Y � 6 ª 6¢ä�@ § ÜDÜÞ�ß à§ ÜDÜÞ�ß à � � ´� �Ês�� � 6 Û o S «�·hT5U�V sS p p sK « 6· ¸ 6� Õ Y � 6 ª 6¢ä�@ § ÜDÜÞ�ß à @3ê<ë§ ÜDÜÞ�ß à H ê<ë � � ´¨ �Ês�� � 6 Û � «�· È MvKß¸ 6 Ú S ¸Õ�xw T�s ¤ p s1U (7.33)

7.3.2 S-wave incidence

Following a similar procedure to that for the derivation of the theoretical P-wave

scattering attenuation expressions in Section 7.3.1, the theoretical S-wave scattering

attenuation forms can be derived as a function of «DÄ � :� @�:Á³ 6 P « 6Ä
À Y�¸Çì ª 6¢ä�@ § ÝxÜÞ�ß à§ ÝxÜÞ�ß à � � Á� �Ês�� � 6 Û o «�Ä¸ È MvKß¸ 6 Ú S ¸Õ�xw T�s p p sK « 6Ä
À Y ª 6¢ä�@ § ÝxÝÞ�ß à§ ÝxÝÞ�ß à � � Á¨ �Ês�� � 6 Û o S «�ÄIT5U�V s S p p s1E (7.34)

where «�Ä is the wavenumber of S waves, s ÁâÁª<« ¬ is the minimum scattering angle for

in-phase scattered waves (SS), and the minimum scattering angle for the coupled phase

( s�Á ´ª<« ¬ ) can be written bys Á ´ª<« ¬ P s ÁâÁª<« ¬ Ú ��� ´ Ú � Á �FE � Á P Y7Ú s ÁâÁª<« ¬S E � ´ P T5U�V @�: � ¸ T5U�V"� Á �FU (7.35)

Here, � Á� and � Á¨ are given by� Á� �Ês�� P T5U�V s Ð Ú�¸»� Á: å ´ :J: �Ês�� K � �xw T�s Ú ¸ � � Á6 å ´ :J: �Ês�� K T5U�V s � Á6 å ´ :´6 �Ês��xÑK¯�xw T�s Ð Ú�¸»� Á: å ´ 6F: �Ês�� K � �xw T�s Ú ¸ � � Á6 å ´ 6F: �Ês�� K T5U�V s � Á6 å ´ 6J6 �Ês��xÑÀE� Á¨ �Ês�� P+�xw T�s Ð Úï� Á: å Á :J: �Ês�� K � �xw T�s Ú9M � � Á6 å Á :J: �Ês�� K T5U�V s � Á6 å Á :´6 �Ês�� ÑÚ T5U�V/s Ð Úï� Á: å Á6F: �Ês�� K � �xw T�s Ú9M � � Á6 å Á6F: �Ês�� K T5U�V s � Á6 å Á6J6 �Ês��xÑÀE (7.36)

where � Á: PNÚ S and � Á6 P á K S . Details in the derivation are given in Appendix C.

Note that we consider minimum scattering angles in terms of s ´Ç´ª<« ¬ for a P-wave

incident problem and s ÁâÁª<« ¬ for S-wave. The in-phase minimum scattering angles ( s ´Ç´ª<« ¬ ,s�ÁâÁª<« ¬ ) are determined by constant angles regardless of the velocity ratio ¸ of the media,

while those for coupled phases ( s ´ Áª<« ¬ , s�Á ´ª<« ¬ ) vary with ¸ of the media (see, Figs. 7.5 and

C.1).
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7.4 Comparison with results with scalar approximation

We have derived the scattering attenuation formula for 2-D elastic waves in terms

of normalized wavenumber ( « � ), for stochastic media where the physical parameters

(Lamè coefficients and density) are varied randomly. There are significant differences in

the characteristics of elastic waves and scalar waves, particularly in radiation patterns

associated with scattering, the phase coupling on a boundary of heterogeneity and the

differences in the frequency content of P and S waves. We therefore expect there to be

noticeable differences in the scattering induced for scalar and elastic waves.

We therefore compare the scattering attenuation formula for elastic waves with that

for scalar waves (e.g., Frankel & Clayton, 1986) and discuss possible problems when the

theoretical attenuation curve for scalar waves is used instead of that for elastic waves.

For convenience, we consider a case only with velocity perturbations, i.e., á P . in (7.8).

The theoretical scattering attenuation formula as a function of « � for scalar waves is then

given by (e.g., Frankel & Clayton, 1986; Frenje & Juhlin, 2000; cf. formula for SH waves,

Appendix D)

� @�:Û P « 6 ³ 6Y ª ä§ Þ�ß à Û o S «NT5U�V s Sip p s1E (7.37)

where ³ is the standard deviation of the velocity perturbation.

The theoretical expression for the scattering attenuation for elastic waves in (7.33)

includes both the wavenumber for P waves and the ratio ( ¸ ) of P and S wave velocities,

which means that the Poisson’s ratio is an important factor in the scattering process of

elastic waves. This is illustrated in Fig. 7.6 where we compare the theoretical scattering

attenuation curves for elastic waves with different P/S velocity ratios ( ¸ ) for a random

medium with a von Karman distribution with a Hurst number ( � ) of 0.25. We consider

a constant background P wave velocity of 6.74 km/s. In the figure the elastic scattering

curves are plotted together with the curve for scalar waves for which s�ª<« ¬ is
Ò . � . There

is a significant dependence of the scattering attenuation behaviour as a function of the

velocity ratio ¸ ; as ¸ is increased, the normalized wavenumber for the peak attenuation

is reduced and also the magnitude of the attenuation tends to increase. Although the

attenuation curve for scalar waves displays a similar pattern to that for elastic waves

with ¸=PæM U*)<� , which is a plausible velocity ratio in the crust, the attenuation levels for

elastic waves are smaller than that for scalar waves for large « � . It is therefore preferable

to derive scattering attenuation relations directly for elastic waves rather than rely on the

scalar wave results.
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Fig. 7.6. Comparison of theoretical scattering attenuation ( Ó/í Í ) curves with the minimum scattering angle
( © Þ�ß à ) of 30 � for scalar waves and elastic waves with various ratios ( e =1.17, 1.75, 3.5, 5, 7) of P and S wave
velocities in von Karman random media with the Hurst number ( ¾ ) of 0.25. The reference P wave velocity is
set at 6.74 km/s. The theoretical curves for elastic waves are highly dependent on the velocity ratio.

7.5 Construction of stochastic random media

A number of studies have been made of the theoretical conditions on media so that

the scattering of elastic waves can be represented effectively with the first-order Born

approximation, i.e., single scattering (Kennett, 1972; Aki & Richards, 1980; Hudson &

Heritage, 1981; Wu & Aki, 1985). When comparisons are to be made with the results of

numerical models, it is particularly important that an exact representation is made of a

specific random medium. Recently, Frenje & Juhlin (2000) have presented theoretical

conditions for implementation of a valid correlation distance in a discretized spatial

medium. They have derived the conditions between the grid steps ( µ 	aE µ d ) and the

correlation distance (
�
) on the basis that the minimum wavenumber ( « � ª<« ¬ P S Y�o R � , NP 	aEcd , R � =length of domain in  direction) is smaller than the corner wavenumber

( «�î P M/o � ) and the Nyquist wavenumber ( « � ² b � P Y�o\µV ,  ÃP 	aEcd ) is larger than the

corner wavenumber. However, models based on an autocorrelation function (ACF) do

not depend on the corner wavenumber (Mai & Beroza, 2002), and so it is necessary to

check the suitability of a specific random medium by considering both the limits on the

accuracy of the numerical differentiation and the representation of the medium with a

given correlation distance. The accuracy requirement determines the smallest acceptable

size of the heterogeneities in domain, and the physical limits of the model controls the

maximum acceptable size.
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The WBM will remain stable in a pointwise medium with large fluctuations for

correlation distances down to
� Ps�}u ¯ - µ 	aE µ d 0 o À . The FDM needs a correlation distance

which is sufficiently large compared to the grid steps (i.e., �}u ¯ - µ 	aE µ d 0ðï �
, see Frenje &

Juhlin, 2000). The physical limit comes from the confinement in size when using a limited

number of grid points to represent the medium. When random heterogeneities with

large correlation distance are placed in a relatively small medium, the heterogeneities

behave as a ‘virtual structure’ and generate biased results (e.g., Frankel & Clayton, 1986).

Therefore, it is necessary to check if the fractional fluctuation of physical parameters

generated by a model is appropriate for the numerical representation of given random

medium.

For this purpose, we introduce a measure of ‘randomicity rate’ ( � £ ) which is will be

close to zero when the domain is sufficiently large compared with the heterogeneities.

We define� £ P Ý i H;Ú i�@�Ýi ¨ ñ . E (7.38)

where i H and i�@ are the number of grid points with positive and negative random

values for the fractional fluctuation of physical parameters, and i ¨ is the total number of

grid points. When the domain is large enough, the positive and negative random values

are distributed homogeneously (i.e., i Hóò i�@ in the domain) and � £ becomes close to

zero.

In addition to these conditions, the distance from source to receiver is another

important factor for the accurate measurement of scattering attenuation; since waves

propagating through a random medium experience focusing and defocusing effects, the

travel times and amplitudes of waves recorded at short distances from the source are

very variable (e.g., Hoshiba, 2000). The time responses for short distances are thus not

very suitable for a quantitative study. We therefore endeavour to set the receivers at a

sufficient distance that the influence of the heterogeneity tends to minimize the variations

in amplitudes between different receivers. For P-wave incidence problems, we introduce

a domain which is composed of 512-by-512 grid points corresponding to 77 j 77 km 6
( µ 	 P µ d =150.3 m) in physical space (Fig. 7.7), and for S-wave scattering studies, a

domain with 128-by-512 grid points (i.e., 19.3 j 77 km 6 ) is considered. The plane P- or

S-wave sources are located at the 70th grid point from the bottom boundary Â æ (i.e.,d P M . U�� km), and the receivers are set at the 70th grid point from the top boundary ÂTð .

The 128 receivers are deployed horizontally with uniform spacing, at every fourth grid

point (i.e., 	 =0.6 km) for P-wave scattering problems and at every grid point ( 	 =0.15 km)

for S-wave problems. The reference compressional wave velocity ( `ï> ) is 6.74 km/s, the
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Fig. 7.7. Configuration of 2-D unbounded medium for the P-wave scattering studies. 128 receivers (  ) are
placed with uniform interval (602 m) at 10.5 km from the top boundary ( [7� ). A plane P wave source ( ! ) is
located at 10.5 km from the bottom boundary ( [3� ). The reference compressional ( Ê � ) and shear ( Ë � ) wave
velocities are 6.74 and 3.85 km/s, and the reference density ( Ì � ) is 2.9 g/cm Ó . The top and bottom artificial
boundaries ( [�� Ö [�� ) are treated by absorbing boundary conditions and the left and right boundaries ( [¨� Ö [�� )
are considered with periodic boundary conditions.

shear wave velocity ( ¾ > ) is 3.85 km/s and the density ( a�> ) is 2.9 g/cm Ñ which are typical

crustal values (cf., Kennett et al., 1995). The source time function is a Ricker wavelet with

dominant frequency (
� î ) 4.5 Hz. The top and bottom artificial boundaries ( ÂÅð EñÂ æ in Fig.

7.7) are treated with absorbing boundary conditions, and the other boundaries ( Â ¹ EñÂ�ò )

by periodic boundary conditions to imitate a domain with the unlimited horizontal

length.

We construct stochastic random media using von Karman, exponential and Gaussian

autocorrelation functions (ACF, iå� n � ) and their power spectral density functions (PSDF,Û �ã«]� ). The von Karman ACF and PSDF in 2-D media are (e.g., Sato & Fehler, 1998)

iå� n � P MS�" @�: Âv� �®� W n� [ " á " W n� [ E Û �ã«]� P Õ Y � � 6� M�K « 6 � 6 �#" H : E (7.39)

where n is a spatial lag,
�

the correlation distance, � the Hurst number, Â the Gamma

function, « a wavenumber and á " is the modified Bessel function of order � . The

exponential ACF and PSDF are

iå� n � P�¦ @b�%$ â E Û �ã«]� P S Y � 6� MvK « 6 � 6 � Ñ $ 6 E (7.40)
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and the Gaussian ACF and PSDF are given byiå� n � P�¦ @b� �&$ â � E Û �ã«]� PdY � 6 ¦ @ ¨ � â �&$ Ó U (7.41)

We note that the exponential ACF corresponds to the von Karman ACF with Hurst

number 0.5.

To generate the stochastic random models, we use the PSDF, the spectrum of the

ACF, in the wavenumber domain (e.g., Roth & Korn, 1993) and assign random numbers

distributed evenly between Ú Y and Y to the phase '��ã« Z E(« X � at each point ( « Z E(« X ). The

fractional fluctuation of velocities in the wavenumber domain �he�ã« Z E(« X � is then expressed

as �h®�ã« Z E(« X � P È R Z R X È � �ã«<�I� ¦ �)( « ¨ ¢+* ¨ § ¯ E (7.42)

where «<� is the root mean square of « Z and « X , and
R � ( àP 	aEcd ) is the extent of the

medium in the  direction. The resultant fractional fluctuation of the velocities in spatial

domain h®�
	aEcdY� in (7.8) is obtained by 2-D Fourier transforms. We consider 10 % standard

deviation ³ for the wave-speed perturbation, and following Sato (1984) set á P . U©À in

(7.8) to controls the perturbation level for the density.

7.6 P-wave scattering patterns and process

We undertake numerical modelling of elastic waves in stochastic heterogeneous media

with three different styles: (a) generated by von Karman ACFs with � =0.05 and 0.25,

(b) exponential ACF (corresponding to von Karman ACF with � =0.5) and (c) a Gaussian

ACF. Each type of random media is considered for six different values of the correlation

distances (
�
=34, 85.4, 214.5, 538.7, 1353.2, 3399 m). In this situation, the normalized

wavenumbers ( « `· � ) for the dominant frequency (4.5 Hz in this study) of incident waves

are 0.14, 0.36, 0.90, 2.26, 5.68 and 14.26. The scattering attenuation for each case

is measured from a band of normalized wavenumbers including « `· � . The smallest

correlation distance implemented in this study,
�
=34 m, satisfies the required condition,�-, �}u ¯ - µ 	aE µ d 0 o À , for the application of the WBM. In Table 7.1, we present the

randomicity rate ( � £ ) for each of the simulations. The � £ values increase with the size

of correlation distances in von Karman and exponential media, but for the simulation

of Gaussian media show a complicated pattern (see, � £ values for Gaussian media at�
=538.7 m).

Fig. 7.8 displays the representative textures of stochastic random media resulting

from velocity perturbation, which are constructed following the scheme in Section 7.5.

In von Karman type models, with increase of the Hurst number ( � ) high-frequency
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Table 7.1. Numbers of grid points with positive and negative values ( i H Eci�@ ) for the random

variation for the reference physical parameters of the stochastic random media and the

randomicity rate � £ as a function of the correlation distance (
�
).. (m) 34 85.4 214.5 538.7 1353.2 3399 von Karman ( ¾NÒ�Þ3ß Þ
á )/�0

131550 131545 131659 132080 132893 135024/ í 130594 130599 130485 130064 129251 127120132
0.0036 0.0036 0.0045 0.0077 0.0139 0.0302 von Karman ( ¾NÒ�Þ3ß â á )/�0
131522 131551 131796 132395 133365 136339/ í 130622 130593 130348 129749 128779 125805132
0.0034 0.0037 0.0055 0.0101 0.0175 0.0402 von Karman ( ¾NÒ�Þ3ß á , exponential)/�0
131422 131542 132002 132548 133591 137422/ í 130722 130602 130142 129596 128553 124722132
0.0027 0.0036 0.0071 0.0113 0.0192 0.0484 Gaussian/�0
131383 131389 131637 132164 131641 132593/ í 130761 130755 130507 129980 130503 129551132
0.0024 0.0024 0.0043 0.0083 0.0043 0.0116

textures reduce and transition of the velocity perturbation becomes smooth. The texture

of Gaussian media is composed of extremely low-frequency structures with smooth

transitions.

In order to obtain a good assessment of the scattering attenuation we need to take

into account the nature of the scattered signal. For vertically incident plane P waves

on media with small-scale heterogeneities, the primary waves are mostly recorded

on the d component and the 	 component contains mostly scattered waves (see, Fig.

7.9). In this case the scattering attenuation can be measured by considering the energy

loss of the incident waves on the d -component records. However, in a medium with

large-scale heterogeneity, there can be significant deviations in the directions of the

primary waves. Thus, e.g., in the synthetic seismograms for the Gaussian random

medium with
�
=1353.2, 3399 m (Fig. 7.10), the primary waves recorded on d component

display a systematic change of amplitudes and arrival times, which is also mirrored on

the 	 -component seismograms. A similar phenomenon is found in seismograms from

von Karman (also exponential) random media with large scale of heterogeneities (see,

Fig. 7.11), where waves with systematic deviations in direction develop ahead of the
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Fig. 7.8. Normalized velocity perturbation in stochastic random media (von Karman with ¾ =0.05, 0.25,
exponential, Gaussian) with correlation distance 214.5 m. As the Hurst number increases, the perturba-
tion changes smoothly in the von Karman type media; Textures of the von Karman medium with small
Hurst number display relatively high-frequency variations, while those with large Hurst number show low-
frequency variations. The Gaussian medium display extremely smooth variations of the perturbations.

scattered coda. However, the systematic variation becomes noticeably reduced for a von

Karman medium with a small value of the Hurst number (see, Fig. 7.12). The level of

scattered waves generated is related to the spectral filtering introduced by the particular

autocorrelation function (Klimeš, 2002). For example, there are less scattered waves for

a Gaussian media with a large correlation distance because the band of wavenumber

coupling scales as M/o � .

The scattering attenuation rate is measured from the seismograms calculated for the
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Fig. 7.9. Synthetic seismograms from the modelling in the von Karman random media with ¾ =0.25 and. =214.5 m. Random scattered waves are developed following the primary waves in Ø -component seismo-
grams, and mainly scattered waves are recorded on the � component.
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Fig. 7.10. Synthetic seismograms from the modelling in Gaussian random media with . =3399 m. The seis-
mograms are composed of mainly primary waves without random scattered waves. The primary waves
are recorded on both � and Ø components since the waves deviate from the incident direction due to the
influence of the large scale of the heterogeneity.

random media using a spectral ratio approach (Aki & Richards, 1980):� @�: � " � P S Ê" n54 V o åð>�� " �åÔ�\� " �3p E (7.43)

where Ê is the wave speed, n is the spatial lag, " is the angular frequency, and å�>`� " �
and åÔ�×� " � are the spectral amplitudes of waves for angular frequency " at the origin

and at the receiver. The spectral amplitudes of the primary waves are estimated by
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Fig. 7.11. Synthetic seismograms from the modelling in exponential random media with . =1353.2 m. The
primary waves are recorded on both � and Ø components with background random scattered waves.
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Fig. 7.12. Synthetic seismograms from the modelling in the von Karman random media with ¾ =0.05 and. =3399 m. The primary waves is not discernible and mainly random scattered waves are recorded on the �
component even the heterogeneity (cf., Fig. 7.11).

stacking 128 seismograms in the frequency domain. These seismograms are tapered in

the time domain using a ‘cosine bell’ (Kanasewich, 1981), as shown in Fig. 7.13, to isolate

primary waves from scattered waves.. The time length 6À: and 6 6 are measured from

the maximum amplitude position ( � ª87#9 ) and l controls the tapering rate at the edges of

window.

The parameters of the tapering need to be adapted to the nature of the seismograms

and so we use a constant size of cosine bell with 6À: =0.22 s, 6 6 =0.18 s, for the calculations
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Fig. 7.13. The cosine bell window for tapering seismograms in time domain. & Þ�:<; is the point where the
amplitude of seismogram is largest, = Í and = � determine the window size, and ¦ controls the tapering rate
at the ends of window.
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Fig. 7.14. Frequency content of seismograms obtained from modelling in the Gaussian random media with. =3399 m. Significant energy of primary waves is recorded in � component, and the sum of spectral ampli-
tudes in � - and Ø -component data recover the spectral amplitudes expected in a homogeneous medium.

with « `· � =0.14, 0.36, 0.90 and 2.26; for the other cases (i.e., « `· � =5.68, 14.26) we employ6�: =0.22 > 0.5 s, 6 6 =0.18 > 0.5 s. l kept constant at 0.07 s. For cases with large-scale

heterogeneity it is necessary to consider both the 	 - and d -component data. As indicated

in Fig. 7.14 the amount of energy on the 	 component is too large to be ignored in

estimates of scattering attenuation, since otherwise we would get an exaggerated loss

by considering only the d component.

Therefore, in some case, such as Gaussian and exponential media with « `· � =5.68,

14.26, and von Karman media with � =0.25 and « `· � =14.26, the scattering attenuation is

measured by using dual component data and compared to single-component processing.

The dual-component processing uses the sum of the spectral amplitudes of 	 - and
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are composed of both scattered and primary waves, appropriate tapering is required.

For each case, the scattering attenuation is measured for a range of frequency from 2 to

9.5 Hz, and the results are displayed around the corresponding « `· � in the � @�:´ Ú «�· �
diagram.

7.7 Comparison between theory and numerical results: P-wave incidence

The scattering attenuation for the stochastic random media is measured from the

synthetic seismograms for each case and compared with theoretical results in Fig. 7.15.

Satisfactory results from a single realization of a stochastic medium can be obtained

when � £ � . U . � . The cases with the different normalized wavenumbers are indicated

by different symbols: an open triangle for « `· � =0.14, a filled square for « `· � =0.36, an

open circle for « `· � =0.90, a star for « `· � =2.26, an open square for « `· � =5.68, and a

filled circle for a medium with « `· � =14.26. The scattering attenuation rates measured

just from d component data are shown by solid lines, and the symbols represent the

results from the dual-component processing. The discrepancy between the single- and

dual-component estimates of attenuation increases with the scale of the heterogeneity,

and is also dependent on the style of random media. The Gaussian media displays

significant discrepancy between the two styles of estimates and the discrepancy also

increases with the value of the Hurst number implemented in von Karman media

(including exponential media). This reflects the increasing deviation of the P wave

from the incident direction with increasing
�

and � . Measurements of single-component

data may therefore give an overestimate of the scattering attenuation (especially for a

Gaussian random media with large-scale heterogeneity).

The measured scattering attenuation rates from each set of data agree well with the

trend of the theoretical curves from single scattering theory. The scattering attenuation

values lie within the band for minimum scattering angles ( s�ª<« ¬ ) between 60-90 � for all

the random media tested. The results from modelling for random media with short

correlation distances (e.g., « `· � =0.14, 0.36, 0.90) show a parabolic variation as a function

of normalized wavenumber.

Clearly the minimum scattering angle ( s�ª<« ¬ ) depends on the particular nature of the

stochastic medium but is not less than 60 � . This fully elastic result needs to be compared

to previous studies which have often used scalar approximations. Sato (1982) predictedsXª<« ¬ to be S_^ � for scalar waves based on a cutoff wavelength for decomposition of

the fractional fluctuation into long and short wavelengths at twice of the dominant

wavelength. Recently, Kawahara (2002) gave a theoretical estimate of s�ª<« ¬ as Ö � � in 2-D
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Fig. 7.15. Scattering attenuation factor Ó í Í normalized for the variance ? � as a function of normalized
wavenumber @ . in the von Karman random media with the Hurst number (a) ¾hÒsÞ3ß Þ
á , (b) 0.25 (c) 0.5
(corresponding to the exponential random media) and (d) in the Gaussian random media. The symbols rep-
resent the data sets used for calculation of the scattering attenuation. The scattering attenuation measured
by using single-component data is provided by solid lines for comparison with that measured by using dual
component data. The minimum scattering angle is determined as lying in the range 60-90 � .
acoustic media by considering the phase velocity of travel time corrected mean waves

in high frequency limit. With a help of numerical modelling based on FDM, Frankel &

Clayton (1986) measured sWª<« ¬ as 30-45 � in 2-D elastic media (von Karman, exponential,

Gaussian media), Jannaud et al. (1991) estimated 90 � in 2-D acoustic Gaussian media

with weak perturbation (4%) on velocity, Roth & Korn (1993) suggested 20-40 � in 2-D

anisotropic acoustic media, and recently Frenje & Juhlin (2000) computed the s�ª<« ¬ for

2-D and 3-D acoustic media (von Karman, exponential, Gaussian media) as 10-20 � .
The results of this study are similar to theoretical results of Kawahara (2002) and also

close to the numerical study based on FDM in weakly perturbed acoustic media (Jannaud

et al., 1991).
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Fig. 7.16. Synthetic seismograms from numerical modelling in the von Karman random medium with¾ =0.25 and . =214.5 m. Scattered P waves (SP) propagate faster before the primary S waves. Strong S coda
waves develop after the primary waves.

7.8 S-wave scattering patterns and comparisons with theoretical curves

In order to check if numerical models behave as ‘homogeneous’ random media and

constant scattering effects develop regardless of incidence direction, we set up simple

problems where the positions of receivers and plane-wave sources are interchanged in

the same models (case A: propagating upward (forward), case B: downward (reverse)).

For case A, horizontal plane shear waves, propagating in the d direction and polarized

in the 	 direction, are generated at line
p
=10.5 km above the bottom artificial boundary

( Â æ ) and are collected at 128 receivers
p
=10.5 km below the upper artificial boundary

( Â�ð ). The receivers are deployed with constant spatial interval 150 m. Case B employs

the reciprocal geometry between receivers and the source.

When plane shear waves are incident to random heterogeneous media, phase-coupled

scattered P waves are generated at the boundaries of heterogeneities and are recorded

before the primary waves in time responses (see, Figs. 7.16). Strong S coda waves

follow after primary waves in 	 components, and multi-scattering effect enables a long

temporal duration of coda. The multi-scattered waves are recorded dominantly on the d
components. Fig. 7.17 shows a comparison of the spectral amplitudes for both forward

and reverse propagation in von Karman media with Hurst number ( � ) 0.25. A constant

size of time window, sufficient to give an adequate description of the primary waves, is



7.8 S-wave scattering patterns and comparisons with theoretical curves 140

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12
A

m
pl

itu
de

Frequency (Hz)

kβ
d a= 0.1

reference
case A
case B

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12

A
m

pl
itu

de

Frequency (Hz)

kβ
d a= 0.63

reference
case A
case B

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12

A
m

pl
itu

de

Frequency (Hz)

kβ
d a= 1.58

reference
case A
case B

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12
A

m
pl

itu
de

Frequency (Hz)

kβ
d a= 9.94

reference
case A
case B

Fig. 7.17. Comparisons of spectral amplitudes of the primary waves between cases A (upward propagation)
and B (downward propagation) as a function of frequency. Large amplitude sets are for � -component time
responses and small ones for Ø -components. Considering average scattering energy loss, low-frequency
waves with small normalized wavenumbers ( @AB . =0.1, 0.63) exhibit relatively large discrepancy in spectral
amplitudes. On the other hand, as @ AB . increases, measured energies of cases A and B lead to be equivalent.

used to resolve differences in energy loss due to scattering. The processing follows the

scheme for P-wave data described in Section 7.6.

At low « `Ä ( « `Ä =0.1, 0.63), there is a systematic difference in spectral amplitudes of	 components; considering the overall energy loss, a significant difference between

forward and reverse propagation develops around the dominant frequency. On the other

hand, at large « `Ä , although there are some differences in the amplitudes, the differences

are not significant compared to the overall energy loss and both cases A and B display

equivalent energy losses. The variation of the spectral amplitudes of the d components

(i.e., small amplitudes) is generally independent of those as the 	 components, but the

amplitude differences on the d components increase with the overall energy losses (see,

the case with « `Ä =9.94). The consistent amplitude differences between the 	 components

at low « `Ä implies that low-frequency waves can be quite sensitive to the nature of the

random media especially with small scale of heterogeneities. On the contrary, the energy

loss at high-frequency range is consistent in modelling with low « `Ä � and can be used for

the analysis.
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Fig. 7.18. Comparisons of scattering attenuation rates of shear waves between cases A (up-going) and B
(down-going). Reasonable frequency ranges (see, Table 7.2) are marked with points, and the attenuation
rates are equivalent in both cases.

Table 7.2. Reliable frequency ranges for the measurement of scattering attenuation rates in von

Karman media with � =0.25.@ AB . 0.1 0.25 0.63 1.58 3.96 9.94

Frequency (Hz) 6.7-8.3 6.7-8.7 6.7-9.7 4.7-8.7 3.5-8.0 3.0-7.0

Fig. 7.18 displays the measured attenuation rates (drawn as lines) of both cases A and

B in the frequency range 2 to 10 Hz. Here the values in the most reliable ranges (see,

Table 7.2) of each experiment are marked with points. The reliable ranges of other types

of random media are determined to lie close to those for von Karman media with � =0.25.

Along with the estimation in von Karman media with � =0.25, we additionally consider

von Karman media with � =0.05 and 0.5 (corresponding to the exponential media) and

Gaussian media. The modelling is undertaken in the case A geometry (e.g., Figs. 7.19

and 7.20 ). The randomicity rates ( � £ ) in (7.38) of stochastic random models for the

S-wave scattering modellings are given in Table 7.3. The � £ values increase with the size

of correlation distance (
�
), but are close to zero in every stochastic model. The maximum� £ is 0.047 (von Karman with � =0.05 and

�
=1353.2 m) and is smaller than the maximum

value ( � £ =0.048) of the models for P-wave scattering studies. Also, parameters of

tapering windows (cosine bell, Fig. 7.13) for seismograms with « `Ä � =0.1, 0.25, 0.63, 1.58

are 6�: =0.25 s, 6 6 =0.25 s and l =0.05 s, and those for seismograms with « `Ä � =3.96, 9.94

are 6�: =0.28-0.30 s, 6v6 =0.28-0.33 s and l =0.05 s. The dual-component analysis (see,



7.8 S-wave scattering patterns and comparisons with theoretical curves 142

6

8

10

12

14

16

18

20

22

24

26

0 2 4 6 8 10 12 14 16 18 20

T
im

e 
(s

)

Range (km)

X

6

8

10

12

14

16

18

20

22

24

26

0 2 4 6 8 10 12 14 16 18 20

T
im

e 
(s

)

Range (km)

Z

Fig. 7.19. Synthetic seismograms from numerical modelling in the von Karman random medium with ¾ =0.5
and . =538.7 m.

Table 7.3. Randomicity rates � £ (= Ý i H Ú i�@vÝ o i ¨ ) of stochastic random heterogeneous media

for S-wave scattering studies.. (m) 34 85.4 214.5 538.7 1353.2 von Karman ( ¾�ÒhÞ3ß Þ
á )132
0.0043 0.0048 0.0068 0.0151 0.0273 von Karman ( ¾�ÒhÞ3ß â á )132
0.0034 0.0040 0.0102 0.0201 0.0403 von Karman ( ¾�ÒhÞ3ß á , exponential)132
0.0039 0.0051 0.0119 0.0268 0.0471 Gaussian132
0.0048 0.0013 0.0056 0.0185 0.0308

Section 7.6) is implemented for the correct estimation of scattering attenuation rates from

seismograms in the exponential and the Gaussian media with « `Ä =9.96.

The estimated S-wave scattering attenuation rates from synthetic seismograms are well

represented by the theoretical curves with minimum scattering angles ( s�ÁâÁª<« ¬ ) in the range

60 � to 90 � in all stochastic models (Fig. 7.21). Such result is identical to that of the P-wave

scattering study in Section 7.7.
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Fig. 7.20. Synthetic seismograms from numerical modelling in the Gaussian random medium with . =1353.2
m.

7.9 Scattering attenuation ratios of P and S waves

7.9.1 For wavenumber

We use the theoretical scattering attenuation expressions for P and S waves in (7.33) and

(7.34), which have been shown to be compatible with the results of numerical modelling,

for the investigation of scattering properties of elastic waves in random media. The use

of theoretical expressions allows various case studies to be undertaken without massive

numerical modelling.

The scattering attenuation rates depend on the velocity ratio ( ¸ ) of medium, and we

consider representative crustal velocities: `�> =6.738 km/s, ¾ > =3.85 km/s, and ¸ =1.75

(Kennett et al., 1995).

Fig. 7.22 displays comparisons between scattering attenuation rates of P and S waves

as function of normalized wavenumber ( « � ), where « represents the wavenumber of

incident waves, i.e., «�· for the P-wave incident case and «âÄ for the S-wave. In general,

the attenuation-rate variation for « � is such that P waves lose slightly more energy due

to scattering than S waves at « � ï 1 and the attenuation rates are comparable at large

normalized wavenumber ( « � Æ 1). However, the Gaussian random models have different

gradients of the scattering attenuation curves for P and S waves at « � Æ 1.

The characteristic attenuation patterns of P and S waves give rise to a relatively simple

attenuation ratio ( � @�:´ o\� @�:Á ) pattern in von Karman and exponential random models
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Fig. 7.21. Comparisons of theoretical and numerically estimated scattering attenuation rates of shear waves
( Ó í ÍÝ ) as a function of normalized wavenumber @ B . in the von Karman random media with the Hurst num-
ber (a) ¾ ÒnÞ3ß Þ
á , (b) 0.5 (corresponding to the exponential random media) and (c) in the Gaussian random
media, under case A geometry. The attenuation rates in the reliable ranges are marked with points and
those in neighbour are drawn in lines. The scattering attenuation rates are well represented by the theoreti-
cal curves for 60-90 � minimum scattering angle.

Table 7.4. Maximum attenuation ratios ( ÆDC P�� @�:´ o\� @�:Á ) for « � and
���

in von Karman type

media with different Hurst number ( � ) when `'> =6.74 km/s and ¾ > =3.85 km/s ( ¸ =1.75). The

ratios are measured at « � =100 and
���

=100 km/s.

¾ 0.05 0.25 0.5© Þ�ß à 60 � 90 � 60 � 90 � 60 � 90 �
�FEHG IKJML#N Í �ã�PO 1.03 0.94 0.99 0.91 0.96 0.89�FEHG IRQ%L#N Í �ã�PO 1.09 0.99 1.31 1.21 1.67 1.56

(Fig. 7.23). At low ( « � ï 0.1) and large ( « � Æ 10) normalized wavenumber, the magnitudes

of the attenuation ratios depend on the minimum scattering angle but are nearly constant

regardless of models. The maximum ratios at « � ï 0.1 are 1.36 at 60 � and 1.19 at 90 � . The

minimum ratios at « � Æ 10 vary with both the type of random model and the minimum

scattering angle, but all are close to 1 (see, Table 7.4). For normalized wavenumber
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Fig. 7.22. Comparisons of P and S wave scattering attenuation rates as a function of normalized wavenum-
ber ( @ . ) in the von Karman type random media with the Hurst number (a) ¾NÒ�Þ3ß Þ
á , (b) 0.25 (c) 0.5 and (d) in
the Gaussian random media, when Ê � =6.74 km/s and Ë � =3.85 km/s ( e =1.75). @ represents the wavenumber
of the incident waves, i.e., @ µ for P waves and @ èTS K L for S waves.

0.1 �ñ« � � 10, the attenuation ratios decrease with « � with gradients which depend on

the models. The Gaussian random media do not exhibit a coherence between the two

minimum scattering angles at large « � ( « � | 1), and show steep variation of ratio with « � .

In von Karman models (including exponential random models), P waves lose more

energy at low wavenumber by scattering than S waves. The difference reduces with

increase of wavenumber and the magnitude of the energy loss for P and S waves

become equivalent at high wavenumber. This characteristic pattern can be found also

in field-data analysis (e.g., Yoshimoto et al., 1993).

7.9.2 For frequency

The consideration of attenuation ratios as a function of frequency (
�

) allows a direct

comparison with those based on field-data analysis. Using the simple relationship� P «�Ä ¾ o � S Y � P «�·*` o � S Y � , we obtain expression for the attenuation rate as a function of
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Fig. 7.23. Scattering attenuation ratios of P and S waves as a function of normalized wavenumber ( @ . ) in
the von Karman type random media with the Hurst number ¾�ÒhÞ3ß Þ
á , 0.25, 0.5 and in the Gaussian random
media, when Ê � =6.74 km/s and Ë � =3.85 km/s ( e =1.75).

normalized frequency (
���

). Note that the implementation of a different set of velocities

with ¸ =1.75 needs only a relative change of
���

values (e.g., `�> =6.738 km/s, ¾ > =3.85 km/s2 `�> =4.0 km/s, ¾ > =2.286 km/s).

In Fig. 7.24, we find that shear wave attenuation is more significant at low
���

( � 1

km/s) in all random models, while compressional wave attenuation is more dominant at

large
���

( | 1 km/s). However, the dominancy of P-wave scattering in the high frequency

region (
��� | 1 km/s) reduces with decrease of Hurst number in von Karman media. The

frequency dependence of elastic-wave attenuation at high frequencies (
��� | 1) matches

the behavior found in regional seismic data analysis (e.g., Castro et al., 1997).

Attenuation ratios increase with
���

in von Karman type models (Fig. 7.25), but

Gaussian models exhibit a steep variation at
��� | 1. At low

���
( � 0.1 km/s), all models

exhibit constant attenuation ratios depending on the minimum scattering angle; 0.444 for

60 � , 0.388 for 90 � . Also, the ratios are constant at large
���

( | 10 km/s), but the magnitudes

vary with both the nature of the model and the minimum scattering angle. In particular,

the maximum attenuation ratios increase with Hurst number in the von Karman models

(Table 7.4).

The pattern of attenuation ratios in Fig. 7.25 agrees well with the reported results

based on field-data analysis, which vary from 0.4 to 2.9 (see, Fig. 5.3 in Sato & Fehler

(1998)). At low frequencies (
� � 0.05 Hz), Anderson et al. (1965) and Tsai & Aki (1969)

present constant attenuation ratios around 0.4. Taylor et al. (1986) reported attenuation



7.9 Scattering attenuation ratios of P and S waves 147

0.01

0.1

1

0.1 1 10

Q
-1

 ⁄ ε
2

fa (km/s)

von Karman ACF (ν=0.05)

60o

90o

P waves
S waves

0.01

0.1

1

0.1 1 10

Q
-1

 ⁄ ε
2

fa (km/s)

von Karman ACF (ν=0.25)

60o

90o

P waves
S waves

(a) (b)

0.01

0.1

1

0.1 1 10

Q
-1

 ⁄ ε
2

fa (km/s)

von Karman ACF (ν=0.5)

60o

90o

P waves
S waves

0.01

0.1

1

0.1 1 10

Q
-1

 ⁄ ε
2

fa (km/s)

Gaussian ACF

90o 60o

P waves
S waves

(c) (d)

Fig. 7.24. Comparisons of P and S wave scattering attenuation rates as a function of normalized frequency
( U . ) in the von Karman type random media with the Hurst number (a) ¾ ÒnÞ3ß Þ
á , (b) 0.25 (c) 0.5 and (d) in
the Gaussian random media, when Ê � =6.74 km/s and Ë � =3.85 km/s ( e =1.75).

ratios increasing from about 0.5 to 2 with frequency in North America in the range 0.05

- 3 Hz. The attenuation ratios at high frequencies (
� | 10 Hz) have been reported to vary

from 1.12 to 2.94 between different regions (e.g., Castro et al., 1997; Yoshimoto et al., 1993;

Chung & Sato, 2001; Carpenter & Sanford, 1985; Modiano & Hatzfeld, 1982). Note that

the reported attenuation ratios can be obtained using von Karman random models with

appropriate Hurst number and correlation distance.

However, some studies (e.g., Yoshimoto et al., 1993, 1998) present attenuation ratios

which do not conform to the theoretical pattern (i.e., ratio increasing with frequency)

at high frequencies due to the dominance of intrinsic attenuation. For example, the

intrinsic attenuation rates in the Kanto area (see, Yoshimoto et al., 1993) are about twice

the scattering attenuation rates and vary independently of the scattering attenuation

rates (Fehler et al., 1992). The dominance of intrinsic attenuation at high frequency may

result from a difference between the frequency dependences of scattering and intrinsic

attenuation rates, which results in the decrease of the seismic albedo at high frequencies
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Fig. 7.25. Scattering attenuation ratios of P and S waves as a function of normalized frequency ( U . ) in the
von Karman type random media with the Hurst number ¾�ÒÀÞ3ß Þ
á , 0.25, 0.5 and in the Gaussian random
media, when Ê � =6.74 km/s and Ë � =3.85 km/s ( e =1.75).

(e.g., Akinci & Eyidoǧan, 2000), as shown in northern Greece (Hatzidimitriou, 1994)

where the scattering attenuation has
� @®>WV X 6 frequency dependence while the intrinsic

attenuation has
� @®>WV Ó ì . In addition, complexity of media resulting from inhomogeneous

(space and depth dependent) distribution of heterogeneities (e.g., Campillo & Plantet,

1991; Menke et al., 1995; Tselentis, 1993) can lead to attenuation variation at high

frequency with increasing hypocentral distance.

7.10 Discussion and conclusions

We have been able to establish a consistent approach to the estimation of scattering

attenuation for elastic waves, using multi-component information and fully elastic

analytic results. We formulated the scattering attenuation variation ( � @�:Û ) for 2-D elastic

waves in terms of the normalized wavenumber ( « � ) for stochastic random media. The

theoretical scattering attenuation rates of elastic waves are highly dependent on the ratio

of P and S wave velocities; so it is necessary to use a full elastic treatment rather than

employ scalar results as a reference.

Accurate numerical modelling is critical for quantitative assessment of stochastic

media. Through an example of numerical differentiation, we have shown that

there is a possibility of excessive attenuation in rapidly varying media when the

smoothness assumptions built into FDM methods are violated. We have shown that the
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wavelet-based method (WBM) can achieve high accuracy in numerical differentiation

and stability in highly perturbed media, and so is very suitable for work on scattering

attenuation.

Synthetic seismograms have been computed for 4 types of random media (Gaussian,

exponential and von Karman media with � =0.05, 0.25) with 6 different correlation

distances. With large-scale heterogeneity energy in the primary waves gets transferred

to the perpendicular to the incident direction; this means that dual-component

seismograms are needed for correct measurement of scattering attenuation. For the broad

range of stochastic models the minimum scattering angle for elastic waves, derived from

comparison of the WBM with theoretical curves, lies in a band from as 60-90 � . This range

of values is similar to those presented by Kawahara (2002) and Jannaud et al. (1991) for

2-D acoustic media.

The discrepancies in previous results, s�ª<« ¬ =90 � in mildly perturbed media (
ÕZY

) and

20-30 � in more highly perturbed media, may well arise from limitations in previous

numerical modelling. The limitations of the FDM can give rise to overestimates of

attenuation in media with strong variations.

Also, the nature of scattering attenuation ratios ( � @�:´ o\� @�:Á ) of elastic waves has been

investigated as a function of wavenumber and frequency in stochastic random models by

using theoretical attenuation expressions based on the first-order Born approximation.

The theoretical attenuation expressions were compared with results from numerical

modelling. The theoretical curves with minimum scattering angle 60-90 � fitted well to

the results.

In general, the scattering attenuation rates of P and S waves display almost equivalent

magnitudes for normalized wavenumbers ( « � ). However, P waves lose more energy

by scattering for « � � M , and the attenuation rates of both waves become comparable

for « � | M . Thus, elastic waves have maximum attenuation ratios at « � � 0.06 and the

minimum at « � | 10. The maximum ratios are measured to be constant regardless of the

form of stochastic model, but depend on the minimum scattering angle: 1.36 for 60 � and

1.19 for 90 � . On the other hand, the minimum ratios depend on the models but lie close

to 1. Thus, the difference in energy loss of P and S waves due to scattering reduce with

wavenumber and becomes indistinguishable at high wavenumbers in random media.

The relative variations of the scattering attenuation rates of P and S waves change with

frequency; S waves lose more energy than P waves at low frequencies (
�����

1.0 km/s),

while P waves decay more at large frequencies. This characteristic feature leads to a

frequency-dependent pattern of attenuation ratio: the ratios increase with normalized

frequency from 0.1 to 2 km/s and are measured to be constant at low (
��� � 0.1 km/s)
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and high (
��� | 2 km/s) normalized frequencies. The minimum ratios for low frequencies

are 0.4 regardless of the nature of the stochastic model, and the maximum ratios at high

frequencies depend on both the model and the minimum scattering angle. The maximum

ratios increase with the Hurst number ( � ) in von Karman type random models (including

the exponential random model). However, Gaussian models show sharp variations in

ratios with
���

. Reported attenuation ratios based on field-data analysis are consistent

with the theoretical attenuation ratios. Thus, it appears that random heterogeneities

in the crust may be modelled by a set of von Karman models with appropriate Hurst

numbers (see also, Tripathi & Ram, 1997).

Intrinsic attenuation plays as a dominant factor in apparent attenuation of seismic

waves at high frequencies in some regions, and thus numerical studies including both

intrinsic and scattering attenuation effects may be required in order to understand the

attenuation patterns of high-frequency seismic waves in the crust. The � @�: - ��� diagram

allows straightforward comparison to the attenuation factors measured in nature, and is

useful in both assessing scattering effects for frequencies and characterizing the media in

terms of average scale (correlation distance) of random heterogeneities.



8
Comparison of scattering patterns between acoustic and SH

waves

8.1 Introduction

In Chapter 7, we have investigated scattering patterns and scattering attenuation rates

for elastic waves. With comparisons with previous studies on acoustic (scalar) waves, we

concluded that the scattering attenuation rates in P-SV waves are different from those for

acoustic waves.

This discrepancy may be related in part to the differences in the characteristics

between elastic and acoustic waves, for example, the presence of wavetype coupling

on a boundary. However, it is not certain if the scattering pattern will be identical

between acoustic waves and SH waves which have a similar form of equation and share

Green’s function for homogeneous media. Although the equation systems of acoustic

and SH waves are similar to each other, the placement of the density term and the

incompressibility term is reversed in acoustic-wave equations compared to elastic-wave

equations. Thus, we may find the dependence of the scattering on the parameter

perturbations by comparing the scattering patterns of acoustic and SH waves.

We compare the scattering patterns and attenuation rates under the same conditions

(magnitude of velocity perturbation, propagation distance, dominant frequency of

incident waves etc.), with the inclusion of the additional perturbation in the density for

SH problems. Also, we formulate the theoretical scattering attenuation expression for SH

waves as a reference in comparison with numerical results, and this result is compared

with those of scalar waves (Frankel & Clayton, 1986; Frenje & Juhlin, 2000). The effect of

the density on the SH scattering is discussed using the theoretical attenuation variation.
151
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8.2 Theoretical scattering attenuation variations

The 2-D acoustic wave equation is given byW 6 �W # 6 P\[ WW 	 c Ma W �W 	 f K][ WW d:c Ma W �W dñf E (8.1)

where � is the pressure in the fluid, [ the incompressibility and a is the density. Here,

the wave velocity ( Ê ) is given by È [ o a . When a is assumed to be invariant in the spatial

domain, equation (8.1) can be simply rewritten in the form of a scalar wave equation:W 6 �W # 6 P�Ê 6 c W 6W 	 6 K W 6W d 6 f � U (8.2)

When the velocity perturbation in (7.8) is considered, the theoretical scattering

attenuation variations of the scalar waves are given by (Frankel & Clayton, 1986; Frenje

& Juhlin, 2000)� @�:Û P « 6Û ³ 6Y ª ä§ Þ�ß à Û o S «`ÛT5U�V s S p p s1E (8.3)

where «`Û is the wavenumber of the incident scalar waves, ³ is the standard deviation

of the velocity perturbation, s�ª<« ¬ is the minimum scattering angle, and Û is the power

spectral density function.

The 2-D SH wave equation has a similar form to the acoustic wave equation but

positions of the density ( a ) and the shear modulus ( e ) are different:W�[ 6bW # 6 P Ma WW 	 ce W�[�bW 	 f K Ma WW d c�e W�[�bW d f E (8.4)

where
[�b

is the SH-wave displacement. Theoretical scattering attenuation variations can

be derived following the scheme in Section 7.3.1 and are given by� @�:^³ 6 P « 6Ä
À Y 6 ª 6¢ä�@ § Þ�ß à§ Þ�ß à � � ^: K0� ^6 � M Ú:�xw T�s�� � 6 Û c S «�Ä}T5U�V s SZf p s1E (8.5)

where � ^: =-2, � ^6 = á +2 and «�Ä is the wavenumber of the incident S waves. Details of

the derivation are described in Appendix D.

8.3 Modelling and scattering patterns

For modelling in acoustic wave propagation, we implement only velocity perturbation

(10%) without consideration of density perturbation, which is often considered in

acoustic layers in the earth. Thus, the resultant wave propagation pattern is similar to

scalar wave propagation. On the other hand, we consider both velocity (10%) and density

perturbations (8%) in modelling for SH waves, and compare the scattering patterns

between acoustic and SH waves. We employ the same background wave-velocity
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Fig. 8.1. Description of 2-D unbounded medium for the acoustic and SH wave scattering. 128 receivers (  )
are placed with uniform interval (312.5 m) at 29.1 km from the source ( ! ). The wave velocity in the back-
ground medium is 2.5 km/s and the density is 2.2 g/cm Ó . The top and bottom artificial boundaries ( [�� Ö [�� )
are treated by absorbing boundary conditions and the left and right boundaries ( [¨� Ö [�� ) are considered with
periodic boundary conditions.

( Ê >\E ¾ > =2.5 km/s) and the same magnitude of external force for the source. The domain

is represented by 512-by-512 grid points corresponding to a 40 km-by-40 km in physical

space (Fig. 8.1). The media are considered to be unbounded by considering the top and

the bottom boundaries ( ÂVðïEñÂ æ ) with absorbing boundary conditions and the left and the

right boundaries ( ÂVò�EñÂ ¹ ) with periodic boundary conditions. Plane waves are generated

at the source positions ( K ) and 128 receivers ( y ) with a uniform interval (312.5 m) are

placed at 29.1 km from the source.

Five different values of correlation distances (
�
= 17.6, 44.3, 111.4, 279.8, 702.9 m) are

implemented for the representation of stochastic random heterogeneities. As in the P and

S wave scattering problems in Chapter 7, we implement four different types of stochastic

random media (exponential, Gaussian, von Karman with � =0.05, 0.25). The construction

of the appropriate random media is described in detail in Section 7.5.

Figs. 8.2, 8.3, 8.4 and 8.5 show the time responses of acoustic pressure and SH

displacement recorded for the stochastic random media. Although the same order

of velocity perturbation has been introduced in both experiments, different scattering

patterns in time responses are observed; the coda in acoustic-wave problems display

random waveforms, while those in SH-wave problems show more consistency in coda
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Fig. 8.2. Time responses in von Karman media with Hurst number ( ¾ ) 0.05 and correlation distance ( . ) for
stochastic heterogeneities (a) 44.3 m, (b) 114.3 m, (c) 279.8 m, and (d) 702.9 m.
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Fig. 8.3. Time responses in von Karman media with Hurst number ( ¾ ) 0.25 and correlation distance ( . ) for
stochastic heterogeneities (a) 44.3 m, (b) 114.3 m, (c) 279.8 m, and (d) 702.9 m.
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Fig. 8.4. Time responses in the exponential media with correlation distance ( . ) for stochastic heterogeneities
(a) 44.3 m, (b) 114.3 m, (c) 279.8 m, and (d) 702.9 m.
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Fig. 8.5. Time responses in Gaussian media with correlation distance ( . ) for stochastic heterogeneities (a)
17.6 m, (b) 44.3 m, (c) 114.3 m and (d) 279.8 m.
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wavetrains. The coda waves in the acoustic problem are similar to those in the P wave

scattering problem (Section 7.6), and the coda waves in the SH problem to the S-wave

problem (Section 7.8).

In order to investigate the difference in scattering patterns between acoustic and SH

waves, we first resolve the effect of the density perturbation on scattering. From (7.8),e can be expressed in terms of ¾ as e = ¾ 6 a = ¾ 6> a�>�� M�K h�� 6 � M�K á h�� . That is, when given

magnitudes of velocity and density perturbation are considered, e has a magnitude

multiplication by � M�K h�� 6 � M�K á h�� and this enhances the fractional perturbation by

relatively reducing small perturbations and increasing large perturbations. The terms

in the SH wave equations require multiplication of the displacement by the enhanced

physical parameter and a spatial differentiation (e.g.,
W1Z � e W�Z`[�b � ). The differentiated

scattered wavefield is modulated by the density with a scaling by � MðK á h�� . However,

the implementation of the density perturbation does not look to cause the systematic

pattern. Time responses in random media with no density perturbation ( á =0) still

display the systematic pattern (see, Fig. 8.6) and, moreover, the waveforms in coda

are close to those with the density perturbation (see, Fig. 8.7). But, primary waves

for media without density perturbation display larger amplitudes than those for media

with density perturbation. That is, the implementation of the density perturbation

enhances physical perturbation and, as a result, introduces additional energy loss during

scattering. But the scattering paths and patterns appear to be conserved regardless of the

density perturbation rate.

On the other hand, the acoustic waves have only a velocity perturbation like the SH

waves without density perturbation. The velocity term has an magnitude multiplication

of � M�K h�� 6 , and this relative enhancement of the fractional perturbation is identical to

SH waves without density perturbation. However, a direct multiplication is made to

the differentiated wavefield in the acoustic wave equation (e.g., Ê 6 W 6Z � ), and therefore

time responses do not include the effects of the physical parameter gradients in spatial

domain. So, comparisons between the time responses of acoustic and SH waves do not

display any distinctly correlated features (see, Fig. 8.8).

The origin of the systematic patterns in the SH coda can be explained by the

shear-wave radiation pattern. Acoustic waves have isotropic radiation pattern at

a point heterogeneity, but SH waves, polarized in the tangential direction, have

polarized radiation pattern relative to the incident direction. Therefore, scattered waves

from heterogeneities laid parallel (or close to parallel) to the SH incident direction

are enhanced, and scattered waves from heterogeneities laid perpendicular to the

incident direction are suppressed. The preferential scattering direction is reinforced



8.3 Modelling and scattering patterns 159

10

11

12

13

14

15

16

0 4 8 12 16 20 24 28 32 36 40

T
im

e 
(s

)

Range (km)

10

11

12

13

14

15

16

0 4 8 12 16 20 24 28 32 36 40

T
im

e 
(s

)

Range (km)

(a) (b)

10

11

12

13

14

15

16

0 4 8 12 16 20 24 28 32 36 40

T
im

e 
(s

)

Range (km)

10

11

12

13

14

15

16

0 4 8 12 16 20 24 28 32 36 40

T
im

e 
(s

)

Range (km)

(c) (d)

Fig. 8.6. Time responses in stochastic random media with correlation distance ( . ) 114.3 m when the density
perturbation is suppressed (i.e., ¤ =0): (a) von Karman medium with ¾ =0.05, (b) von Karman medium with¾ =0.25, (c) exponential medium and (d) Gaussian medium. Wavefields in the time responses are so close to
those in random media with density perturbation (see, Figs. 8.2, 8.3, 8.4, 8.5).

as the primary wavefront moves in the medium, and becomes more pronounced with

increasing distance (see, Figs. 8.2, 8.3, 8.4, 8.5). In contrast, acoustic scattering

waves develop in all directions homogeneously and thus are shown to be distributed

homogeneously in time responses.

The appearance of the P and S coda in Sections 7.6 and 7.8 can be explained similarly.

The primary P waves which are vertically incident on the stochastic random media satisfy[ >Z P . and
[ > X P�¦ � « ¨Fµ X @�¶ ¨ ¯ � see, (7.5) � and first-order scattered waves are developed from

the terms Ù W1Xî[ >X and � Ù K S e � WYX5[ >X in
k]Z5Z

and
k®XJX

. Therefore, the combination of the two

sources of scattered waves allows development of extensively random coda. Also, the P

waves convey most energy in the radial direction and the energy is gradually reduced

by transfer to the tangential direction. Thus, scattering waves from heterogeneities

are distributed homogeneously as shown in the acoustic case. On the other hand, the
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Fig. 8.7. Comparisons between SH time responses for stochastic random media with density perturbation¤ =0.8 and those without density perturbation ( ¤ =0) at the 20th receiver in Fig. 8.1. Waveforms of time
responses are very close, but primary waves for the media without density perturbation display larger am-
plitudes than those with density perturbation.
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Fig. 8.8. Comparisons between acoustic and SH waveforms for stochastic random media with no density
perturbation at the 20th receiver in Fig. 8.1. Although the reproduced random heterogeneities are same
between the both media, the coda waves do not show any correlated features each other.
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primary waves in the S-wave problem are written as
[ >Z Ph¦ � « ¨ B X @�¶ ¨ ¯ and

[ > X P . � see,

(C.1) � , and the first-order scattered waves develop from the term e W®Xî[ >Z of
k]Z°X

. In this

case, the scattered waves develop from just one term and the spatial variation of the

perturbation is involved. Moreover, SV waves share the radiation pattern with SH waves.

So, we can expect a coherent scattering wavetrain in the stochastic random media like the

SH-wave case.

In general, coda waves increase with the correlation distance (
�
) of heterogeneities in

media, but decrease after about «âî � | 1 where «�î is the wavenumber for the dominant

frequency of incident waves. Also, the phase shift of primary waves increases with the

correlation distance, but acoustic waves display a much stronger variation compared to

SH waves.

8.4 Scattering attenuation

For comparisons of the scattering attenuation rates between acoustic and SH waves, we

apply constant time windows for processing and the spectral amplitudes of the primary

waves recorded in the stochastic random media are shown in Figs. 8.9, 8.10, 8.11 and

8.12. In general, acoustic waves display more energy dissipation by scattering than SH

waves. Also, the discrepancy between the spectral amplitudes of acoustic and SH waves

increases with the Hurst number ( � ) in the von Karman type media.

The theoretical scattering attenuation curves for acoustic (8.3) and SH waves (8.5)

display a similar trend for « � but some magnitude differences are expected in the

attenuation rates between acoustic and SH waves for specific minimum scattering angle

(see, Fig. 8.13). Also, the SH theoretical curves with minimum scattering angle ( s�ª<« ¬ ) 60 �
and 90 � have nearly equivalent values unlike the acoustic ones and those of elastic waves

in Chapter 7. This means that SH scattering waves propagate dominantly to around the

incidence direction.

Fig. 8.13 exhibits comparisons between reference attenuation curves and numerical

attenuation rates estimated from the time responses. The reference curves for acoustic

waves are drawn in solid lines and those for SH waves in broken lines. The numerical

attenuation rates of acoustic waves are represented by open circles and squares, and

those of SH by filled ones. As expected in the comparisons of spectral amplitudes, the

measured attenuation rates of both problems are comparable at low « � ( � 1) but those of

acoustic waves display more energy loss than SH waves at high normalized wavenumber

( « � | 1). The appearance of a large difference between the numerical attenuation rates

at low « � ( � 1) in von Karman media with � =0.05 looks to be related to numerical errors

induced during the evaluation of the attenuation rates (e.g., the interpolation process
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Fig. 8.9. Comparisons of spectral amplitudes of acoustic and SH waves in von Karman media with Hurst
number ( ¾ ) 0.05 and correlation distance ( . ) for stochastic heterogeneities (a) 17.6 m, (b) 44.3 m, (c) 114.3 m,
(d) 279.8 m, and (e) 702.9 m. Spectral amplitudes of the incident waves are provided for a reference.
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Fig. 8.10. Comparisons of spectral amplitudes of acoustic and SH waves in von Karman media with Hurst
number ( ¾ ) 0.25 and correlation distance ( . ) for stochastic heterogeneities (a) 17.6 m, (b) 44.3 m, (c) 114.3 m,
(d) 279.8 m, and (e) 702.9 m.
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Fig. 8.11. Comparisons of spectral amplitudes of acoustic and SH waves in the exponential media with
correlation distance ( . ) for stochastic heterogeneities (a) 17.6 m, (b) 44.3 m, (c) 114.3 m, (d) 279.8 m, and (e)
702.9 m.
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Fig. 8.12. Comparisons of spectral amplitudes of acoustic and SH waves in Gaussian media with correlation
distance ( . ) for stochastic heterogeneities (a) 17.6 m, (b) 44.3 m, (c) 114.3 m, (d) 279.8 m, and (e) 702.9 m.
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Fig. 8.13. continued.

to match the frequency interval of time responses). Note that the magnitudes of the

numerical attenuation rates are rather small compared to the others and the difference in

spectral amplitudes between acoustic and SH waves is not noticeable (see, Fig. 8.9(a)).

The numerical attenuation rates of acoustic waves lie in a range between reference

curves with sWª<« ¬ =60 and 90 � at high « � ( | 1), but lie below the 90 � reference curve at low
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Fig. 8.14. Comparisons of the theoretical SH scattering attenuation variations with three different magni-
tudes of the density perturbation, 0, 4 and 8 % (i.e., ¤ =0, 0.4, 0.8), for minimum scattering angles ( © Þ�ß à )
0 � and 90 � . The attenuation rates are proportional to the density perturbation, but the trend in curves is
conserved.

« � ( � 1). Similar patterns have been shown in the P-wave attenuation (see, Fig. 7.15).

Also, the scattering attenuation rates of SH waves lie in the region of the reference curves

with sXª<« ¬ =30-60 � .
Using the theoretical attenuation expression for SH waves, the effects of the density

perturbation on the scattering attenuation can be deduced. We compute theoretical

attenuation curves for two additional cases with 0 and 4 % density perturbation (i.e.,á =0, 0.4). Fig. 8.14 shows comparisons between the attenuation curves with á =0, 0.4,

0.8 when sXª<« ¬ =0, 90 � . Also, the detailed variation of attenuation rates with s�ª<« ¬ is shown

in Fig. 8.15 for á =0 and 0.4. As expected in Fig. 8.7, the introduction of the density

perturbation raises additional energy dissipation and the energy loss is proportional to

the density perturbation rate. The trends of the attenuation variation for á =0 and 0.4 are

similar to that for á =0.8. However, Gaussian random media have different curve slopes

for the density perturbation rate at large « � (see, Fig. 8.15). This indicates that forward

scattering waves become stronger with the density perturbation ( á ) in Gaussian media
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Fig. 8.15. Theoretical SH attenuation variations for ¤ =0 and 0.4. The bold labels represent for the case ¤ =0.4
and the normal labels for the case ¤ =0.

and also energy loss by scattering at large « � ( | 1) increases with the reduction of the

density perturbation.

The attenuation rates increase with á and the density perturbation controls the

magnitude of scattering and the entire energy dissipation. Further, as á decreases, the

variation of attenuation rates for a change of s�ª<« ¬ gets larger (see, Fig. 8.15). As a result,

when á =0, differences between the attenuation curves with s ¼ � ² =60 � and 90 � become

noticeable. That is, the perturbation without density variation (i.e., á =0) allows much

random directional scattering.

8.5 Discussion and conclusions

We have compared scattering patterns and attenuation rates of acoustic and SH waves

in stochastic random media. Although the same magnitude of velocity perturbation is

considered in both acoustic- and SH-wave modelling, the resultant scattering patterns

and attenuation rates have somewhat different behaviour. The differences becomes much

larger when large-scale heterogeneities are implemented. The coda waves in the SH time

responses show a characteristic scattering coherency in the wavetrains. On the contrary,
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the coda waves in acoustic time responses display a relatively homogeneous distribution

of scattered waves.

The coherency texture in SH coda is developed by the radiation pattern of shear waves

and increases with the scale of heterogeneities. A similar pattern is also observed in SV

time responses. The implementation of the density perturbation introduces additional

energy loss, but waveforms are likely conserved regardless of the density perturbation.

The density perturbation also raises the concentration of perturbation in specific physical

parameters and, resultantly, enhances forward scattering.

The energy losses by scattering at small normalized wavenumber ( « � ) are nearly

identical between acoustic and SH waves. But, the energy loss in acoustic waves

increases rapidly relative to that of SH waves at large normalized wavenumber. The

minimum scattering angles determined for acoustic waves are similar to those for elastic

waves ( sXª<« ¬ =60-90 � ), but SH waves have smaller angles ( s�ª<« ¬ =30-60 � ). That is, forward

scattering is dominant in SH waves and especially the scattered waves with large

wavelengths are concentrated inside a small cone of angles from the incident direction.



9
Scattering in media with a random distribution of

fluid-filled cavities

9.1 Introduction

Since Chernov (1960) introduced a stochastic representation technique employing

smooth variation in perturbation for random heterogeneities in the earth, many studies

have implemented stochastic random media for the investigation of scattering of elastic

or acoustic waves (e.g. Frankel & Clayton, 1987; Roth & Korn, 1993; Sato & Fehler,

1998). We also have studied scattering attenuation variation of acoustic and elastic waves

in previous chapters (Chapters 7 and 8). However, some studies (e.g., Yomogida &

Benites, 1995; Kawahara & Yamashita, 1992) suggested an alternative way to represent

a random medium via a set of randomly distributed homogeneous heterogeneities with

sharp physical impedance to the background, for examples, crack or cavities.

Theoretical scattering attenuation rates for fracture zones with randomly distributed

cracks (fluid filled or unfilled) have been formulated by Kawahara & Yamashita (1992)

by using the representation theorem for displacement discontinuity across the crack

and the mean wave formalism (e.g., Hudson, 1980) considering the average wavefield

over the random media. The cracks are considered to be thin compared to both the

length of the cracks and the wavelength of incident waves. Murai et al. (1995) have

compared the theoretical variations with numerical results for 2-D SH waves, and found

that attenuation rates depend on the state of the crack surfaces (e.g., viscous, dry) and are

inversely proportional to wavenumber at large wavenumbers.

However, only numerical studies have been made for scattering and attenuation in

media with a random distribution of cavities (Benites et al., 1992; Yomogida & Benites,

1995), and thus the numerical results are compared with the theoretical attenuation

variations for scalar waves in stochastic random media (e.g., Wu, 1982). However, it

is not certain if the scattering pattern in the stochastic random media is identical or
169
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even comparable to that for media with randomly distributed cavities. Also, it is unclear

which term or parameter corresponds to the standard deviation of the perturbations of

the physical parameters in the theoretical attenuation expression for stochastic random

media. Therefore, it is necessary to derive a theoretical attenuation expression for media

with a random distribution of cavities for a correct investigation.

For numerical simulation in random media, many numerical techniques have been

implemented. For stochastic random media, finite difference methods (FDM) have

been widely used due to the simplicity in designing numerical models and codes

(Frankel & Clayton, 1987; Roth & Korn, 1993). But, the accuracy limitation in

numerical differentiation prevent the FDM from treating small heterogeneities without

the introduction of a dense grid system. On the other hand, Nagano (1998) applied

the Haskell’s matrix method (Haskell, 1953) to analyze the crack waves trapped inside

a single fracture that is layered horizontally between low velocity layers. However,

this class of method is limited to simplified layered-structure problems, and thus it is

hard to consider micro-structures properly. Also, there has been an attempt to use an

indirect boundary element method (IBEM) for modelling of elastic waves in single crack

media (Pointer et al., 1998), in which variations of diffraction and scattering have been

studied with change of the crack length, the crack opening size and the internal materials.

Carcione (1998) has implemented a pseudospectral Chebyshev method for modelling

of elastic waves in a medium with a single crack. However, the technique inhibits

incorporation of heterogeneities in various sizes and shapes without an interpolation

procedure.

In order to overcome the limitations in representing complex shapes of cracks or

cavities, several alternative numerical techniques have been introduced. For 2-D

SH-wave modelling in fracture zones with identical cracks aligned parallel, Murai et

al. (1995) have computed total wavefields using the representation theorem (Pao &

Mow, 1973) as a function of wavenumber. Liu et al. (1997) have investigated diffraction

and scattering of 3-D elastic waves in media with a single crack using the Kirchhoff

approximation technique that requires a small computational cost compared to classical

grid-based methods. Also, boundary integral methods (Coutant, 1989; Yomogida &

Benites, 2002; Yomogida & Benites, 1995) have been implemented for modelling of

wave propagation in media with random cracks (or cavities) and for the estimation of

scattering attenuation.

These semi-analytic techniques allow accurate modelling in media with cavities of

complex shape, but it is hard to expand the technique to problems with heterogeneous

background media (random physical perturbation or layered structure) due to the
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difficulty in obtaining the Green’s function for the media. Moreover, when the shapes

of cracks or cavities are complicated, the computational cost increases significantly.

Also, when the cracks (or cavities) are filled with elastic or fluid materials, additional

computational efforts are required to include the effects of the internal crack (or cavity)

waves properly.

We implement the wavelet-based method, which allows consideration of media

composed of small heterogeneities with high impedance. We measure attenuation rates

of elastic waves in random fluid-filled cavity media which are numerically challenging,

and investigate effects of size of the cavity to the attenuation rates.

In order to derive theoretical attenuation expressions for random cavity media, we

consider the analytic wavefields in the media (Pao & Mow, 1973). We compare the

theoretical attenuation variations with numerical results estimated from time responses

by the wavelet modelling. The autocorrelation function for the cavity distribution is

determined empirically by a least square fitting. Differences in theoretical attenuation

variations between stochastic random media and random cavity media are discussed,

and characteristics of the both media are compared.

9.2 Waveform in a medium with a fluid-filled cavity

We have investigated the scattering of elastic waves in stochastic random media in

Chapters 7 and 8. As an alternative representation of random media, media composed

of randomly distributed homogeneous heterogeneities with high impedance to the

backgrounds such as cracks and cavities, have been considered. We consider media

with fluid-filled cavities and investigate differences in wavefields and scattering between

stochastic random media and random cavity media.

We first simulate elastic wave propagation in medium with a fluid-filled circular cavity.

The wave velocities in the background medium are 3.6 km/s for P waves and 2.06 km/s

for S waves, and the density is 2.4 g/cm Ñ . The physical parameters of the material in

the cavity are 1.8 km/s for P waves and 1.2 g/cm Ñ for the density, but the shear wave

velocity is zero. The radius of the cavity is 0.47 km. Plane P waves are incident in vertical

direction from the bottom. Fig. 9.1 shows successive snapshots of the wavefield. The

snapshot for # =2.0 s clearly displays the dimension of the cavity.

Diffracted coupled P and S waves are developed by the incident P waves at the

boundary of the cavity, and only P waves are transmitted inside the cavity. The

transmitted waves are multiply reflected inside the cavity and successive multi-order

coupled reverse-transmitted waves follow the diffracted waves. The secondary phases

are clearly displayed in the 	 -component snapshots where there is an absence of the
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Fig. 9.1. Snapshots of displacement wavefield for a plane P wave incidence in a medium with a fluid-filled
cavity at � =2.0, 3.0 and 3.5 s. Diffracted and reflected waves are successively generated.
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Fig. 9.2. Representation of a domain (40 � 23.8 km) with randomly distributed 22 fluid-filled cavities. The
cavities are distributed in a confined region (40 � 17.2 km) and 128 receivers ( �qÏ ) are placed at the top bound-
ary of the domain. For domains with 89 or 112 cavities, additional random positions are included to the given
22 cavity positions. Plane P waves are incident from the bottom of domain. Left and right boundaries are
considered with periodic boundary conditions to satisfy with the condition for homogeneous distribution of
cavity in a medium.

primary incident waves. Moreover, the plane waves undergo a phase healing as they

propagate through the uniform medium, and we find that the amplitudes of the plane

waves vary smoothly over a wide area (see, d -component snapshots for # =2.0 and 3.0 s).

After a long time lapse, the internal interference of the fluid waves is still clearly shown

(see, snapshot for # =3.5 s).

Scattering attenuation may be dependent on the number of the cavities inside a

medium and also on the scale of cavities. In order to study the wavefield variation

and the scattering attenuation, cavities are randomly distributed inside a specific cavity

zone. The cavity positions are used consistently regardless of the change of cavity radius.

Fig. 9.2 shows the distribution of 22 fluid-filled cavities in a homogeneous medium.

Wave speeds in the medium are `�> =3.15 km/s and ¾ > =1.8 km/s, and the density isa�> =2.2 g/cm Ñ . Also, the P wave velocity ( `�� ) and the density ( aZ� ) in the cavities are

half of those in the back ground, and the shear wave velocity ( ¾ � ) is zero. When more
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Fig. 9.3. Snapshot of displacement wavefield for a plane P wave incidence in a medium with 22 fluid-filled
cavity at � =6.5 s. The radius of the cavities are 31.2 m.

cavities are considered in a medium, additional random positions are included. The

cavity zone comprises 40 km-by-17.2 km in physical space. The size of the media is

40 km-by-23.8 km and the the grid step ( µ 	aE µ d ) is 78.1 m. 128 receivers are placed on

the top of the media with constant interval 312.4 m. Two vertical artificial boundaries

( Â ¹ , Â�ò ) are considered with periodic boundary conditions to satisfy with the condition

for homogeneous distribution of cavities inside the medium and to include scattered

waves from neighbours. Ricker wavelets with dominant frequency 4.5 Hz are used as

the source time function of the incident plane P waves.

A snapshot of the displacement wavefield at # =6.5 s in a medium with 22 fluid-filled

cavities with radius 31.2 m is shown in Fig. 9.3. Reflected or diffracted waves from

the cavities follow after the primary plane P waves. Also, multi-order secondary waves

develop continuously from the cavities.

The time responses show that the magnitudes of the scattered waves are dependent

on the size and the number of cavities (see, Fig. 9.4). In general, with increase of the

size and the number, the scattered waves become stronger. Also, as shown in Fig. 9.1,

primary waves are recorded mainly on the d component regardless of the scale and the

number of cavities. The wavefield pattern is different from that in stochastic random

media with large scale of heterogeneities, where primary waves are recorded on both 	
and d components by the influence of refraction.

Also, the time responses for media with cavities show that the magnitude variations
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Fig. 9.4. Time responses recorded at the 112 receivers ( �³Ï , Ô =1,2, ß�ß ß ,128 in Fig. 9.2 in media composed of (a)
22 cavities with radius ( .�� ) 3.9 m, (b) 22 cavities with .�� =9.4 m and (c) 22 cavities with .�� =23.4 m. This figure
continues at the following page.
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Fig. 9.4. (continued) Time responses recorded at the 112 receivers ( �9Ï , Ô =1,2, ß�ß ß ,128 in Fig. 9.2 in media
composed of (d) 22 cavities with .�� =62.5 m, (e) 89 cavities with .�� =15.6 m, and (f) 112 cavities with .p� =31.2
m. With increase of the number and the radius of cavities, the energy loss of the incident waves increases.
Also, scattered waves are distributed homogeneously at the receivers regardless of the scale and the
number of the cavities.
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in the primary waves do not directly affect the magnitude of the scattered waves (see,

Fig. 9.4(f)), unlike the situation for stochastic random media. Such a pattern is related

to the characteristics of the random cavity distribution. That is, a significant part of

the incident waves are blocked by cavities which have a large physical impedance

relative to the background media, and are reflected back (propagation backward).

Back-scattered waves thus become stronger and multiply-scattered waves are distributed

homogeneously in the domain. The travel time anomaly is not significant in the time

responses even for media with a large size and number of cavities. Therefore, it appears

that a travel time correction is not required for the determination of scattering attenuation

for media with random cavities, unlike stochastic random media.

9.3 Theoretical scattering attenuation rate

We formulate an analytical expression for the scattering attenuation of P waves ( � @�: )
in media with randomly distributed cavities. We consider a medium with a cavity with

radius
� î and the medium is divided by two domains, �<> (medium except the inclusion)

and �ð: (inside the cavity). The P and S wave velocities in �<> are `�> and ¾ > , and those

in �ð: are `ï: and ¾ : . When the center of cavity is located at the origin ( � ) of a coordinate

system, the displacement potential at ¾ for vertically incident unit P waves ( ' « ) is given

by (Pao & Mow, 1973; Liu et al., 2000)

' « �j¾������ P ®°¯�± � � �ã«�·]d Ú " # � � P �»¼�½ > � ¼ ³ ¼ O ¼ �ã«�· n � �xw T°� � ��� ¦ @ � ¶ ¨ E (9.1)

where «�· is the wavenumber of the incident P waves with velocity `�> , O ¼ is a Bessel

function of the first kind of order � and ³ ¼ is a Neumann factor given by ³c> =1 and ³ � =2

for  , M . The angle � is measured from d axis and therefore ¾ is given by ( n T5U�V/� , n �xw T�� ).

The displacement potentials for scattering waves ( '�� , �5� ) outside the inclusion region

are given by

' � �j¾������ P �»¼�½ > � ¼ ³ ¼ å ¼ � « : ¯¼ �ã«�· n � �xw T°� � ��� ¦ @ � ¶ ¨ E
� � �j¾������ P �»¼�½ > � ¼ H : ³ ¼ É ¼ � « : ¯¼ �ã«�Ä n �CT5U�Va� � ��� ¦ @ � ¶ ¨ E (9.2)

and the transmitted waves ( '�� , ��� ) inside the inclusion are' � �j¾������ P �»¼�½ > � ¼ H : ³ ¼ � ¼ O « : ¯¼ �ã«�· � n � �xw T°� � ��� ¦ @ � ¶ ¨ E
� � �j¾������ P �»¼�½ > � ¼ H : ³ ¼ � ¼ O « : ¯¼ �ã«�Ä � n �CT5U�Va� � ��� ¦ @ � ¶ ¨ E (9.3)
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where «�Ä is the wavenumber of S waves, � « : ¯¼ is a Hankel function of the first kind of

order � , and å ¼ , É ¼ , � ¼ and � ¼ are unknown complex-value constants given byå ¼ PNÚ á :/� � �á >`� � � E É ¼ PNÚ SY á 6\� � �á >`� � � E � ¼ PNÚ SY á Ñ � � �á >`� � � E � ¼ PÇÚ SY á Ó � � �á >`� � � E (9.4)

and the á � ( =0,1,2,3,4) are determined by the boundary conditions of the inclusion. The

boundary conditions (continuity of displacement, continuity of stress at the boundary)

are varied following the material of the inclusion.

The displacement and the stress components can be represented in terms of potentials

by [ � � P W ' �W n K Mn W � �W s E [ � § P Mn W ' �W s Ú W � �W n Ek �� � P � Ù K S e � W 6 ' �W nÌ6 K Ù n W ' �W n K ÙnÌ6 W 6 ' �W s 6 Ú S enÌ6 W � �W s K S en W 6 � �W n W s Ek �§ § P Ù K S en 6 W 6 ' �W s 6 K Ù W 6 ' �W n 6 K Ù K S en W ' �W n Ú S en W 6 � �W n W s K S en 6 W � �W s E (9.5)k �� § P S en W 6 ' �W n W s Ú S en 6 W ' �W s K en 6 W 6 � �W s 6 Ú e W 6 � �W n 6 K e n W � �W n E
where  =0,1 which denotes the domain (i.e., �<> , �ð: ). Therefore, the potential wavefield in

domain ��> ( ' > ) can be expressed by the sum of the incident wave potential and scattered

(or refracted) wave potential ( ' « K ' � ).
Using the relationships � @ ¼ Oe@ ¼ �
	�� P � ¼ O ¼ �
	�� and � @ ¼ � @ ¼ �
	�� P � ¼ � ¼ �
	�� (cf.,

Arfken, 1985), equations (9.1) and (9.2) can be rewritten as

' « �j¾������ P �»¼�½ @ � � ¼ O ¼ �ã«�· n � �xw T°� � ��� ¦ @ � ¶ ¨ E (9.6)

and

' � �j¾������ P �»¼�½ @ � � ¼ � ¼ � « : ¯¼ �ã«�· n � �xw T°� � ��� ¦ @ � ¶ ¨ E
� � �j¾������ P �»¼�½ @ � � ¼ H : ª ¼ � « : ¯¼ �ã«�Ä n �CT5U�V}� � ��� ¦ @ � ¶ ¨ E (9.7)

where � ¼ and ª ¼ are� ¼ P å��YE ^ P Ý � Ý¬Eª ¼ Pfç É��YE � , .Ú É��YE � � . U (9.8)

Since � @ ¼ T5U�V}� Ú � ��� P Ú � ¼ T5U�V}� � ��� and ªv@ ¼ �xw TI� Ú � ��� P Ú ª ¼ �xw TI� � ��� , we can
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Fig. 9.5. Change of reference axis centering from cavity to receiver and a related angle change from   to © .
include T5U�V}� � ��� and �xw TI� � ��� in (9.7) for convenience in treatment as

' � �j¾������ P �»¼�½ @ � � ¼ � ¼ � « : ¯¼ �ã«�· n � - �xw TI� � ��� Kå� T5U�V}� � ��� 0 ¦ @ � ¶ ¨
P �»¼�½ @ � � ¼ � ¼ � « : ¯¼ �ã«�· n � ¦ � « ¼�¡ @�¶ ¨ ¯ E (9.9)

� � �j¾������ P �»¼�½ @ � � ¼ ª ¼ � « : ¯¼ �ã«�Ä n � - �xw TI� � ��� Kå� T5U�V}� � ��� 0 ¦ @ � ¶ ¨
P �»¼�½ @ � � ¼ ª ¼ � « : ¯¼ �ã«�Ä n � ¦ � « ¼�¡ @�¶ ¨ ¯ U

In order to consider the scattering of elastic waves in media with randomly distributed

cavities with a given radius, we account for the whole set of scattered waves propagating

to a given receiver in a sense of single scattering theory. We consider a sufficiently large

medium bearing iIî cavities with radius
� î . The cavities are assumed to be distributed

homogeneously and take a tiny area compared to the whole medium ( ¿ ), i.e., i}î � 6î ï ¿ .

So, multiple scattered waves are not strong between the cavities. For simplicity of the

treatment, we set the reference axis through a receiver away from a cavity center and

make an angular transformation using s ( s PdY�o S K � , see Fig. 9.5).

The total scattered P waves ( ' t ) arriving at a receiver can be computed by integrating

the scattering waves from all heterogeneities. We introduce ‘location map’ Æ��j¾��
indicating locations of cavities inside a medium; Æ��j¾�� is set to have the value of 1 at
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locations of cavity centers ( ¾ î� ,  =1,2,. . . , iIî ) and zero elsewhere:

Æ��j¾�� P £ �»� ½ : µ �j¾ Ú ¾ î� �FE (9.10)

where i î is the number of cavities implemented in medium. When we consider the

whole cavities using the location map, the relative position for the location of cavity

center ( ¾ q ) can be implemented for the representation of potentials and therefore '��jÕ¢�����
can be written by '��jÕ K Õ�î£�¢ÕÅîV� for example. Therefore, the total wavefields from cavities

can be written as

' �â �j¾�� P £ �»� ½ : ' �� �j¾�� P £ �»� ½ : ª À ' � �j¾��¢¾ î� � p ¿}�j¾ î� �FE
� �â �j¾�� P £ �»� ½ : � �� �j¾�� P £ �»� ½ : ª À � � �j¾��î�j¾��¢¾ î� � p ¿}�j¾ î� �FU (9.11)

Using an asymptotic expression for the Hankel function (Arfken, 1985), we rewrite the

Hankel function, � « : ¯¼ as

� « : ¯¼ �
	���¤ b SY 	 ®°¯�± � � WI	 Ú Y Õ Ú � YS [ ¤ U (9.12)

Since the receiver is placed at large distance from scatters (i.e., Ý ¾�Ý�Æ Ý ¾ î� Ý ), n � (= Ý ¾ Ú ¾ î� Ý )
in Fig. 7.4 can be given by Ý ¾�Ý Ú È 3 ¾ î� where È is the unit vector in ¾ direction, and M/o n �
can be approximated by Ý ¾�Ý (e.g., Frankel & Clayton, 1986). With (9.9) and (9.12), '��� �j¾��
and �5�� �j¾�� in (9.11) can be written as

' �� �j¾�� P ª À ç �»¼�½ @ � � ¼ � ¼ SY «�·aÝ ¾�Ý
j ®°¯�± � � W «�·aÝ ¾�Ý Ú «�· È 3 ¾ î� Ú Y Õ Ú � YS K � � Ú " # [ ¤ é p ¿}�j¾ î� �FE

� �� �j¾�� P ª�À ç �»¼�½ @ � � ¼ ª ¼ SY «�Ä�Ý ¾�Ý (9.13)

j ®°¯�± � � W «�Ä�Ý ¾�Ý Ú «�Ä È 3 ¾ î� Ú Y Õ Ú � YS K � � Ú " # [ ¤ é p ¿}�j¾ î� �FU
The expression in (9.13) can be simplified using ®°¯�± � ÚÀ� � Y�o S�� = � ÚÀ� � ¼ to give

' �� �j¾�� P �»¼�½ @ � � ¼ SY «�·aÝ ¾�Ý ®°¯�± � � W «�·aÝ ¾�Ý Ú�" #�Ú Y Õ [ ¤
j ª À ®°¯�± � � � � � Ú «�· È 3 ¾ î� � � p ¿}�j¾ î� �
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� �� �j¾�� P �»¼�½ @ � ª ¼ SY «�Ä�Ý ¾�Ý ®°¯�± � � W «�Ä�Ý ¾�Ý Ú " #�Ú Y Õ [ ¤ (9.14)

j ª À ®°¯�± � � � � � Ú «�Ä È 3 ¾ î� � � p ¿}�j¾ î� �FE
where � is the angular distance from the reference position ( ¾ ) to a scatterer’s position

( ¾ î� ).
In order to compute average energy dissipation by scattering, we consider an ensemble

average of '��â and �5�â :�NÝ¥' �â Ý 6 | P S\i îY «�·aÝ ¾�Ý �»¼�½ @ � � � ¼ � 6j ª À ª À �9Æ��j¾��ÂÆ��jÕ���| ®°¯�± o �:� � ���7Î Ú �§¦®� Ú «�· Í È 3 �j¾ î� Ú Õ î� �x� p p ¿}�j¾ î� � p ¿}�jÕ î� �FE�NÝ¥� �â Ý 6 | P S\i îY «�Ä�Ý ¾�Ý �»¼�½ @ � �Kª ¼ � 6 (9.15)

j ª À ª À �9Æ��j¾��ÂÆ��jÕ���| ®°¯�± o � � � ���7Î Ú �§¦®� Ú «�Ä Í È 3 �j¾ î� Ú Õ î� � � p p ¿}�j¾ î� � p ¿}�jÕ î� �FU
We introduce new variables ¨ for the center-of-mass coordinate variable and © for the

relative coordinate variable (e.g., Frankel & Clayton, 1986):¨ P �j¾ î� K Õ î� � o S1E © P ¾ î� Ú Õ î� U (9.16)

When we consider the integrals in (9.15) with the new variables ( ¨ , © ), the integration

for ¨ yields the area ¿ and the integration for © can be considered simply in a polar

coordinate system ( n q , �7q ) using the relationshipn q P Ý © Ý¬E � q P �7Î Ú �§¦�E p ¿}�<©a� P n q p n q p � q U (9.17)

The ensemble averages, therefore, can be simplified with additional introduction of an

autocorrelation function iå� n q � for the ensemble of the location maps:

�NÝ¥' �â Ý 6 | P S\i îk¿Y «�·aÝ ¾�Ý �»¼�½ @ � � � ¼ � 6j ª � » ½ª�� » ½ > ª ¡ » ½ 6¢ä¡ » ½ > iå� n q � ®°¯�± � � � � � q Ú «�· Í n q �xw T�� q � ¤ n q p n q p � q E
�NÝ¥� �â Ý 6 | P S\i îk¿Y «�Ä�Ý ¾�Ý �»¼�½ @ � �Kª ¼ � 6 (9.18)

j ª � » ½ª�� » ½ > ª ¡ » ½ 6¢ä¡ » ½ > iå� n q � ®°¯�± � � � � � q Ú «�Ä Í n q �xw T�� q � ¤ n q p n q p � q E
where we note that the limit of the integral in n q is extended to n q P¬« since we consider
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the distribution of heterogeneities to be sparse and homogeneous in the media, and

therefore, the value of iå� n q�� is small at large offsets (e.g., Frankel & Clayton, 1986).

The integral of the exponential function in (9.18) can be rewritten in terms of Bessel

functions and the integral of a function with a Bessel function can be expressed by a

Hankel transform  (Arfken, 1985, p587, p795):ª 6¢ä> ®°¯�± � � �
	 �xw T�� q K � � q � ¤ p � q P�� ¼ S Y O ¼ �
	��FE
 ¼ �ã«]� P  Ö � Eciå� n q �r�(« ÚðP ª �> iå� n q � n q O ¼ �ã« n q � p n q E (9.19)

where O ¼ �
	�� is the � th order of Bessel function and  ¼ �ã«]� is the Hankel-transformed

autocorrelation function iå� n q�� . We note that when � =0, the Hankel transform is

equivalent to a two-dimensional Fourier transform and 7>`�ã« � � is a power spectral density

function, the spectrum of iå� n q�� . Therefore, � Ý¥'®�â Ý 6 | and � Ý¥�5�â Ý 6 | in (9.18) are given

by

�NÝ¥' �â Ý 6 | P Õ i îk¿«�·aÝ ¾�Ý �»¼�½ @ � � � ¼ � 6  ¼ � Ú «�·®�FE
�NÝ¥� �â Ý 6 | P Õ i îk¿«�Ä�Ý ¾�Ý �»¼�½ @ � �Kª ¼ � 6  ¼ � Ú «�Ä]�FU (9.20)

The attenuation rate ( � @�: ) corresponds to the energy loss per unit area divided by the

solid angle (2 Y ) and the wavenumber of incident waves, and therefore the attenuation

rate � @�: over a spatial lag n is given by

� @�: P i î nS Y ¿«�· � �NÝ¥' �â Ý 6 | K �NÝ¥� �â Ý 6 | ��U (9.21)

Here, i î can also be expressed as the multiplication of the area of the random cavity

region (
á î ) and the number density ( i ), i.e., iGî P i á î . Therefore, the theoretical

scattering attenuation variation for media bearing randomly distributed cavities with

number density i is given by� @�:i P S á îY « 6· � �»¼�½ @ � � � ¼ � 6  ¼ � Ú «�·®� � K S á îY «�·«�ÄG� �»¼�½ @ � �Kª ¼ � 6  ¼ � Ú «�Ä]� � U (9.22)

Note that the theoretical scattering attenuation expression (9.22) is not only for media

with fluid-filled cavities but also for any style of cavities. One can estimate the scattering

attenuation variation for different style of cavities by implementing the appropriate å ¼
and É ¼ in (9.4) for the material inside the cavities.
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Fig. 9.6. Estimated autocorrelation values of � � º]� for three number densities ( ¯ =0.2, 0.5, 1.0) in 50-by-50 and
100-by-100 grid point domains. The estimated values of the two domains are very close.

9.4 Determination of the autocorrelation function

In order to compute the theoretical attenuation variations for the media with random

cavities in (9.22), it is necessary to determine the autocorrelation function (ACF) iå� n � in

the spatial domain. We determine iå� n � empirically with numerical experiments in media

with various number densities ( i =0.05, 0.2, 0.5, 0.8, 1.0). The Æ��j¾�� in (9.10) corresponds to

the locations of cavity centers and is given as a polynomial composed of delta functions.

Therefore, the autocorrelation values can be determined numerically (e.g., Roth & Korn,

1993) by° � n � P �9Æ��j¾��ÂÆ��jÕ���| P Mn ª87#9 ª � Þ�:<;> Æ�� n q �ÂÆ�� n K n q � p n q E (9.23)

where n ª87#9 is the maximum spatial lag in the medium. Here
° � n � represents

unnormalized autocorrelation values dependent on the number density ( i ) of the

medium, and the normalized autocorrelation values iå� n � can be expressed using
° � n � as° � n � P i�iå� n �FU (9.24)

The representative autocorrelation function can be implemented for any number density

problems.

The autocorrelation values should be determined to be constant regardless of the

number of grid points implemented for the representation of the domain if the number

density is constant. We therefore compare the numerical autocorrelation values in two
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different sizes of domains; 50-by-50 and 100-by-100 grid points (Figure 9.6). For the

normalization in distance, we introduce a relative distance n o R where
R

is the reference

distance (e.g., vertical or horizontal length of the medium). The estimated autocorrelation

values are very close between the two experiments, but the 100-by-100 grid point domain

which has a smaller grid step shows more confined trend. Fig. 9.6 displays that the

autocorrelation values are proportional to the number density as indicated in (9.24).

For the numerical determination of ACF, one may implement polynomials or single

functions. However, it is usually difficult to obtain the Hankel transform (  ¼ , � =integer)

for arbitrary functions (Sneddon, 1972). The numerical evaluation technique for Hankel

transform is used popularly in electromagnetic modelling (Anderson, 1984) but is

restricted to lower orders (i.e., � =0,1, see, Anderson, 1989). Only a few functions

are known to have analytic forms for any order � . Gaussian ( ¦ @k�f� � ) and exponential

functions ( ¦ @k�f� ) may be appropriate for the basis function, and the Hankel-transformed

outputs are given by � � E ¦ @k�f� �(« � P « ¼ � ^ 6 K « 6 � @ Ó� W ^ K � È ^�6 K « 6 [ W ^ K È ^�6 K « 6 [ @ ¼ E (9.25)

and "W � E ¦ @k�f� � �(« [ P « ¼ Âv� :6 � K�M �S ¼ H :D^ Í� ¼ H : Âv� � K�M � j :�±ï: c MS � K�M � � K�M � Ú « 6Õ ^ f E (9.26)

where ^ is a constant, Â is the Gamma function, and :�±ï: is the confluent hypergeometric

function defined as:�±ï:Ì� ¥ �(~ª�J	�� P �»² ½ > � ¥ � ²Ä Ð��ã~�� ² 	 ² E (9.27)

and � ¥ � ² P ¥ � ¥ K�M � 35353 � ¥ KåÄ?Ú9M � .
We implement a polynomial composed of exponential functions for the basis function:

iå� n � P £³²»² ½ : � ² ®°¯�± � Ú ] ²�n ��E � ] ² | . �FE (9.28)

where n o R is the normalized distance and
� ² and

] ² are constants to be determined in a

least-squares sense. It is evident that the more functions are considered, the better the

least square fitting for a given data set. However, we find empirically that when many

functions are introduced for the fitting, ACF at certain long distances outside of the data

set has unreasonable values (negative autocorrelation values). That is, when the number

of functions implemented increases, the coefficients
� ² are determined to be mixtures of

positive and negative values. Thus, for certain distances out of the data set, negative

values are determined for the ACF. Therefore, the coefficient
� ² should be required to be

positive to satisfy the expected trend. For the purpose, we find that two functions are
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Fig. 9.7. Comparison of ACFs composed of two and five exponential functions for data set with ¯ =0.2. Both
ACFs satisfy the data set well, but the ACF with five basis functions display unreasonable negative values
at ´âÎ�µ�¶ 1.5.

sufficient for the fitting. Fig. 9.7 shows comparison between the numerically estimated

ACFs based on two and five exponential functions. The ACF based on five exponential

function displays negative values at large distance outside the data set, while the other

ACF exhibits a reasonable pattern.

When two exponential functions are considered for the basis functions of ACF (i.e.,i5� =2), the constants
� ² and

] ² in (9.28) are determined as� : P . U ^JÀ�S1E � 6 P . U Ò ^D)YE ] : P S1U�S1E ] 6 P Õ U (9.29)

Comparisons between numerical values and the estimated ACF (
° � n o R � ) in Fig. 9.8

display a good fitting for data set with small number densities ( i =0.05, 0.2), but poor

agreement for those with large density numbers ( i =0.5, 0.8, 1.0). However, since the area

of random cavity region (
á î ) should be much larger than the area of cavities ( i î Y � 6î , refer

to the assumption in the previous section), i î is normally small ( iIî � 0.001 in this study)

and thus the estimated ACF is sufficient for the representation of the data set. Therefore,

from (9.25) and (9.28) the Hankel transform of the estimated ACF in (9.22) can be written

in the form ¼ �ã«]� P  � � Eciå� n �r�(« �P « ¼ £³²»² ½ : � ² � ] 6² K « 6 � @ Ó � W ] ² K � È ] 6² K « 6 [ W ] ² K È ] 6² K « 6 [ @ ¼ U (9.30)
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Fig. 9.8. Comparisons between data sets and ACF based on two-exponential functions when ¯ =0.05, 0.2, 0.5,
0.8 and 1.0. The ACF satisfies with the data sets for ¯ =0.05, 0.2 well, but become worse for the data sets with
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We may implement an alternative polynomial composed of Gaussian-type exponential

functions. However, although the Gaussian-type exponential function has its own

analytic expression for the Hankel transform, it is often difficult to compute the Hankel

transform due to the hypergeometric function ( :�±ï: ) which converse slowly to the

accurate value.

9.5 Scattering attenuation

The spectral amplitudes of primary waves are measured from time responses recorded

for several different models with random cavities (Fig. 9.9). The spectral amplitudes of

the primary wave transmitted through the media with cavities decrease with increase of

the number of cavities ( iGî ) and the radius of the cavities (
� î ). The spectral amplitudes

of the 	 components are invariant for changes in the d components even when i}î and
� î

become large. That is, primary waves are recorded mainly at d components. Therefore,

scattering attenuation rates can be estimated correctly using only d -component time

responses.

In general, the theoretical attenuation rates are expected to be proportional to

normalized wavenumber «�· � î where «�· is the wavenumber of the incident waves (Fig.

9.10). However, the slope of the curve is not constant in whole range but can be

divided into several segments. In particular, the slope at «D· � îÙ| M . :%V Ñ is nearly zero
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Fig. 9.9. Spectral amplitudes of time responses in · and ¸ components. For the reference, the spectral ampli-
tudes of incident waves are provided. Energy dissipation is proportional to the number of cavities and the
size of radius. Spectral amplitudes in · components are nearly invariant for the change of spectral ampli-
tudes in ¸ components.

and primary waves are expected to dissipate almost completely under single scattering

theory. Scattering energy loss is made during interaction (e.g., refraction, reflection)

between incident waves and cavity surfaces. Therefore, the energy loss increases with

the scale of cavities ( ¹Zº ) or with decrease of incident wavelength ( »½¼ ). So, the scattering

energy loss is proportional to normalized wavenumber ( »k¼�¹kº ). As we have discussed

in Section 9.2, the energy loss at a specific cavity is compensated (i.e., homogeneous

energy loss in the entire primary wavefront) through the phase healing process during
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Fig. 9.10. Comparison between estimated scattering attenuation rates and theoretical variation. Scattering
attenuation rate is expected to increase with normalized wavenumber ( @ µ .n� ). The estimated rates agree with
the theoretical trend well.

propagation. Finally the primary waves are exhausted completely by scattering when

sufficiently large scales of cavities are introduced.

The numerical results are compared with the theoretical rates. Solid lines in the figure

represent the data set from media with 22 cavities and the open circles the data from

media with 89 or 112 cavities. The numerical results agree well with the theoretical

variation. In particular, the attenuation rates measured from data in media with 89 and

112 cavities are coincident with those from data in media with 22 cavities with the same

radius (i.e.,
� î =15.6, 31.2 m). That is, the scattering attenuation rates are proportional to

the number density ( i ) and the energy dissipation is mainly affected by the first-order

scattered waves. Also, the attenuation rates at given media can be inferred efficiently by

the single scattering theory.

The trend of attenuation variation with a random set of fluid-filled cavities is quite

different from that in stochastic random media; the attenuation rates are mainly

proportional to the normalized wavenumber in the random fluid-cavity media, while

the attenuation rates in the stochastic random media increase and then decrease with

normalized wavenumber (see, Chap. 7). Thus, when large scales of cavities are

implemented in a medium, significant energy loss is expected, but the energy loss in

a medium with large stochastic heterogeneities is expected to be small. The scattering
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patterns in the time responses are also different between the two random media, and

therefore, the random heterogeneities with high impedance contrast to the background

medium are not well represented by stochastic random heterogeneities.

9.6 Discussion and conclusions

Random heterogeneities with high physical impedance have been implemented as an

alternative representation of random heterogeneities in the crust, and the scattering

pattern has been investigated. The heterogeneities are introduced using fluid-filled

cavities. Scattered waves are distributed homogeneously in media with random cavities

compared to those in random stochastic media. Primary waves rarely deviate from the

incidence direction. Thus, the primary P waves are recorded mainly on the d components

unlike the case for random stochastic media, where a significant travel time anomaly is

introduced and a dual-component process is essential for estimation of the scattering

attenuation rates at large normalized wavenumbers (see, Sections 7.7 and 7.8). Moreover,

energy loss in the primary waves is not transferred directly to scattering waves, but rather

the energy in scattering waves is kept nearly constant.

The numerical estimates of scattering attenuation rates have been compared with a

new formulation of the theoretical variation of attenuation. In order to compute the

theoretical attenuation rates, the autocorrelation function (ACF) for randomly distributed

cavities is required to be determined empirically. With a polynomial composed of two

exponential functions, the ACF can be well represented. The theoretical attenuation

expression can be applied not only to media with fluid-filled cavities but also to media

with cylindrical cavities filled with any materials by implementing suitable reflection or

transmission coefficients for the materials in the cavities.

The numerical attenuation rates agree well with the theoretical attenuation variation.

The attenuation rates are proportional to the number density ( i ) as expected from the

theory, and the normalized attenuation rates ( � @�: o i ) are constant regardless of the

number density. The scattering pattern and attenuation rates in media with random

cavities are rather different form those in random stochastic media. Therefore, it may

be better to use the both representation techniques for a full description of random

heterogeneities in the crust.

Finally, the wavelet-based method provides accurate and stable time responses in

media composed of random heterogeneities with high physical impedance and allows

a quantitative seismic study in numerically challenging problems.



10
Summary and future studies

10.1 Summary and characteristics of the wavelet-based method

The thesis is concerned with the development of a new technique based on a wavelet

transform for the modelling of acoustic and elastic wave propagation, and shows its

capacity as a wave simulator by applying to challenging problems such as topography

problems, modelling in tectonic regions and investigation of scattering of elastic waves.

A wavelet-based method is developed based on the idea that the consideration of

wave action (e.g., differentiation of wavefield in spatial domain) using wavelets, which

are confined in both physical and wavelet spaces, will allow a more concise and correct

representation of the behaviour of the waves which are also confined in physical space.

In order to implement the technique, the governing equation system is recast using

a displacement-velocity formulation, and this allows a representation of the equation

system in an explicit discrete time form where linear operators for spatial derivatives are

considered by the operator projection technique in wavelet bases.

The wavelet-based method retains high accuracy in numerical differentiation and

allows high stability even in complex and perturbed media. Due to the accuracy and

stability, most natural physical boundary conditions which occur at the contact boundary

of different materials are satisfied automatically through the governing equation system

during modelling without requiring additional consideration of the conditions, even in

media with high impedance contrast. But, the traction-free condition at a free surface,

which occurs between elastic (or acoustic) and vacuum layers, requires an additional

treatment due to the stability condition which needs to be imposed between wave

velocity and grid step (see, Section 3.9). The traction-free conditions are considered

by implementing equivalent forces to the equation system. This sort of approach

can be extended for the consideration of other physical conditions that can not be
190
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included in the governing equation system such as azimuthal anisotropy. The technique

implementing equivalent forces for boundary conditions works correctly, and numerical

results show good agreement with analytic solutions in various models including media

with topography.

The implementation of the equivalent forces, however, requires additional

computational work, and the high stability of the wavelet-based method can be

weakened due to the departure from its inherently periodic characteristic. Therefore,

a careful treatment is required in code development to link the equivalent forces to the

main equation system.

Artificial boundaries of numerical domains are treated by including attenuation terms

in the governing equation system, which are active around the boundaries and attenuate

waves incident to the boundaries. The attenuation terms are designed to be both

continuous and differentiable in space in order to be stable under the multi-order

differentiations which are required in the discrete time form of the wave equation system.

However, since the attenuation zones around the boundaries are set to be consistent

during modelling, and the absorption rates in the region can be varied with the wave

type and the wave speed, low-frequency waves in media with a large Poisson ratio can

not be absorbed well relative to the high-frequency waves. The difference in absorption

can be cured by implementing larger attenuation zones with smoother variation or by

composite use of existing other techniques (e.g., a one-dimensional analysis scheme,

Carcione, 1994).

The wavelet-based method can be extended to media with topography using a suitable

grid mapping technique. The wavelet-based method displays stability in treatment

of media with high variation of topography. However, due to the inherent periodic

characteristic, the topography needs to be implemented at the bottom of the domain and

to be continuous at the left and right boundaries, like Fourier methods. The wavelet

method was also implemented for modelling in tectonic zones with an extension of

the technique for the source region, which allows the implementation of both complex

source media and complicated source activation. The technique will provide a chance to

investigate short-period seismic waves in realistic tectonic models at local distances.

The high stability and accuracy of the wavelet-based method is especially useful for

quantitative studies of the scattering of seismic waves in random heterogeneous media.

The measured attenuation rates from the numerical results are smaller than those of

previous studies based on finite difference techniques, and the wavelet-based method

conserves seismic energy during modelling better than other grid-based techniques.

Moreover, the wavelet-based method demonstrates that high-frequency scattering waves
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causing the travel time anomaly in P, SV and acoustic wave studies are not confined

at a region inside a narrow region to the incident direction (e.g., s�ª<« ¬ =30-45 � ), but are

distributed to a rather large area (60-90 � ). So, high-frequency waves are expected to be

scattered rather randomly in all directions. However, in the study of SH wave scattering,

we found that directional (polarized) scattering by the radiation pattern is rather more

effective than for acoustic and P waves, and so the high-frequency scattering is also

confined at a narrower area (30-60 � ). Although SV scattering waves display a directional

scattering pattern, scattered P waves showing a less polarized pattern are also developed

by the wavetype coupling on boundaries of heterogeneities. Thus, it appears that this

composite effect determines the minimum scattering of SV waves to be comparable to

those of P and acoustic waves.

S waves lose more energy by scattering at low frequency ranges than P waves, and

the phenomenon is reversed for higher frequencies. The scattering attenuation ratios of

P and S waves are proportional to the normalized frequency (
���

) in the range 0.1 � ��� � 2

km/s, but are nearly constant outside that range.

The wavelet-based method also allows modelling in media with randomly distributed

fluid-filled cavities which display high physical impedance to the background. Scattering

waveforms in the media are similar to those in stochastic random media, but

high-frequency scattering waves are developed less in the media with random cavities,

and so the travel-time anomaly is not noticeable in the time responses. Further, the energy

dissipation of incident waves by scattering increases with the scale of cavities since the

portion of scattering waves reflected backward from the cavity boundaries with high

impedance is also increased. Under a single scattering theory, the energy of incident

waves is expected to be dissipated completely at media with sufficiently large scales of

cavities.

The scattering attenuation pattern in media with random cavities is different from

that in stochastic random media where the energy loss is expected to increase and

then decrease with the scale of heterogeneities. Such stochastic random media are

composed of smoothly varying heterogeneities, and thus incident waves are rather

easily transmitted with less energy loss by backward scattering into the heterogeneities.

Also, the variation rate of the heterogeneities become much smoother with the

scale of heterogeneities; therefore, the scattering effect becomes strong in stochastic

random media when the wavelength of incident waves is comparable to the scale

of heterogeneities. The coda in media with random cavities displays rather more

homogeneous distribution of scattering waves than for stochastic random media. It
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seems that a combined use of media with random cavities and the stochastic random

representation may allow a more realistic description of heterogeneities in the earth.

10.2 Future studies

In this thesis, we have confined our scope to 2-D problems. However, it is essential to

consider 3-D problems for the modelling of realistic physical situation. The formulation

of the wave equations as a set of first-order differential equations for the evolution

of the displacement and velocity fields in time can readily be extended to 3-D media

problems. Using the separability of the differential operators we expect to be able to

make a comparable extension to the 3-D case. In order to make the expansion of the

wavelet-based method feasible in current computers, we need to modify the Beylkin’s

original scheme (Beylkin, 1992) for numerical differentiation in the wavelet domain,

which consumes most computational time, in order to achieve a fast operation of spatial

differentiations.

In Chapter 6, we have applied the wavelet-based method to the modelling of elastic

wave propagation in fault zones. As shown in this chapter, the wavelet-based method

can incorporate complex source time functions in complicated media. The wavelet-based

method can be extended to problems with dynamic rupture depending on the frictional

law, initial stress fields (dynamic and static) and fault geometry. Note that such problems

have been investigated theoretically (e.g., Ionescu & Campillo, 1999) and numerically

(e.g., Voisin, 2002; Aagaard et al., 2001) in various studies. However, interactions

with transient seismic waves in the system are often neglected (e.g., Voisin, 2002) and

random heterogeneities (Mai & Beroza, 2002; Beroza & Mikumo, 1996) in the fault region

can not be considered due to the limitation of the numerical technique implemented.

In particular, the wavelet-based method may allow investigation of the slip pulse

present along an interface between dissimilar materials (e.g., Andrew & Ben-Zion, 1997;

Ben-Zion & Huang, 2002) in realistic environments (i.e., complex media, inhomogeneous

initial stress field, pore pressures).

For such modelling, it is expected to include the effects of the time-dependent static

stress change in the elastic wave equation system, and also the coupling between heat

(friction) and strain needs to be considered. Through the modelling including dynamic

rupture system, seismic waves at short distances can be well understood in terms of fault

geometry, dynamic and static stress drops and rupture properties.

We approximate the air layer as a vacuum layer for numerical modelling and a

traction-free condition is implemented at the boundary between the air and elastic (or

acoustic) media. However, the air layer over the earth surface has some density and a
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finite sound wave velocity although they are so small compared to those in elastic and

acoustic layers. The treatment of the real air/earth boundary will require a very fine grid

system due to the stability condition. However, if we are concerned with atmosphere

coupling by the seismic waves, the direct implementation of the air layer may be the

best way to describe the phenomenon. The wavelet-based method is stable in media

with high physical impedance contrast, and the method can be extended to the study by

implementing high-order wavelets.



Appendix A
NS-forms of wavelet expansions

A.1 Formulation of matrix operators via wavelets in NS-form

As we have discussed in Section 2.2, a physical
A 6 �DC7� can be decomposed into a scaling

subspace ( ( � ) and a wavelet subspace ( G � ) The scaling and wavelet subspaces are

orthogonal each other and so the direct sum of the both spaces reconstruct the
A 6 �DC7� . The

scaling subspace ( � can also be decomposed into the higher scaling and wavelet spaces

( ( �FH : , G �FH : ), and the sequential decomposition can be made until the scaling subspace

reach to the null space (
-/.10

). This process is called ‘multiresolution analysis’. Therefore,

any physical space can be represented with direct sum of wavelet subspaces by the

multiresolution analysis, and action of an operator $ in physical space can be represented

with a matrix operator in the wavelet space. However, the matrix operator has a form

requiring large computational resources (memory, time), and the matrix operator is recast

in the non-standard form (NS-form, Belykin, 1992).

The construction of a matrix operator in NS-form based on the work of Beylkin (1992)

is described briefly. The operator $ on
A 6 �¿¾�� in NS-form is obtained by through the use

of operators ( å � EÐÉ � EWÀ � ), for each level  ( m),+ ), in subspaces which project the subspaces

produced by the action of $ onto the subspaces ( G � EJ( � ):$ºP - å � EÐÉ � EWÀ � 0 �ÂÁ�Ã�E (A.1)

where each operator is specified byå �ðP��À�5$ð�À�ÅÄ G � 2 G � E
É �ðP��À�5$À���ÆÄ ( � 2 G � E (A.2)À ��P����5$ð�À�ÆÄ G � 2 ( � U

Here, ��� is a projector onto the scaling subspace ( � and �À� onto the wavelet subspace
195



A.1 Formulation of matrix operators via wavelets in NS-form 196G � . The expression (A.2) means that the distorted space due to an operation of $ onA 6 �¿¾�� space, can be reorganized into subspaces ( � and G � .
Following the discussion in Section 2.2, the physical space where data are collected

is identified as (7> , and the operator $ implemented on the space (È> as $ > . Therefore,

considering (A.1) $ > can be expressed with a set of operators in subspaces ( å � EÐÉ � EñÂ � , | . ) up to a scale i where $ £ becomes a null space as$ > P - å � EÐÉ � EñÂ � 0 £� ½ : U (A.3)

Therefore, when $ > is decomposed up to a certain scale O which is less than i , we can

express $ > generally as$ > P -`- å � EÐÉ � EWÀ � 0�Ç� ½ : E $ Ç 0 E (A.4)

where $ Ç is the operator on the scaling subspace of coarsest scale ( ( Ç ), which

corresponds to$ Ç P�� Ç $À� Ç Ä ( Ç 2 ( Ç U (A.5)

Thus, considering (A.3), $ Ç can be represented through the operator projections on to

subspaces of higher scales up to the scale i , (i.e., $ Ç P - å � EÐÉ � EWÀ � 0 £� ½ Ç H : 0 ). Therefore,

considering (A.2) and (A.5), the operator $ > in (A.4) can be rewritten by

$ > P Ç»� ½ : � �À�I$ð�À�vK¶�À�5$À���vKå���5$ð�À� � Kå� Ç $À� Ç U (A.6)

Since the one-dimensional operator (e.g.,
p o p 	 in 1-D) is applied for the

multi-dimensional operator (e.g.,
WYZ`WLb

in 2-D) via separation into operators acting on

the different directions (see, Section 2.2), we focus on the construction of a homogeneous

differential operator with degree ^ (
p � o p 	 � ). When � � � S , ª � � S , È �� S , É �� S are considered as

components of matrices å � , É � , À � , $]� ( � E R E  )4+ ), the matrix components can be

determined using those for the scale  yP . through the relationships (see, Beylkin, 1992)� � � S P S @k� � ª �@ � �� S @ � 	 Úß� �Â « �/¯ � S @ � 	 Ú R � S @ � p 	 P S @k� � � >� S Eª � � S P S @k� � ª �@ � �� S @ � 	 Úß� � � « �/¯ � S @ � 	 Ú R � S @ � p 	 P S @k� � ª >� S E
È �� S P S @k� � ª �@ � ��� S @ � 	 Úß� �Â « �/¯ � S @ � 	 Ú R � S @ � p 	 P S @k� � È >� S E (A.7)

É �� S P S @k� � ª �@ � ��� S @ � 	 Úí� � � « �/¯ � S @ � 	 Ú R � S @ � p 	 P S @k� � É >� S U
When we set ` � � @ S Ps� >� S , ¾ �� @ S P ª >� S , ¸ �� @ S P È >� S and ! �� @ S P É >� S , the components ( ` � � @ S , ¾ �� @ S ,
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	 Ú R � p �p 	 � ��
	�� p 	aE
¾ �S P ª �@ � ��
	 Ú R � p �p 	 � ���
	�� p 	aE¸ �S P ª �@ � ���
	 Ú R � p �p 	 � ��
	�� p 	aE (A.8)

! �S P ª �@ � ���
	 Ú R � p �p 	 � ���
	�� p 	aU
Here, with use of the two-scale difference equations (Beylkin, 1992; Daubechies, 1992),

we are led to` � S P S � ò @�:»¨ ½ > ò @�:»¨ » ½ > � ¥ ¨ ¥ ¨ » ! �6 S H ¨ @ ¨ » �FE
¾ �S P S � ò @�:»¨ ½ > ò @�:»¨ » ½ > � ¥ ¨ ~�¨ » ! �6 S H ¨ @ ¨ » �FE (A.9)

¸ �S P S � ò @�:»¨ ½ > ò @�:»¨ » ½ > �ã~ ¨ ¥ ¨ » ! �6 S H ¨ @ ¨ » �FE
where the coefficients ~ ¨ , ¥ ¨ are the quadrature mirror filters of length 6 which is

determined by wavelets used in the analysis. For Daubechies wavelets with l vanishing

moments, 6 P S`l .

Since ` � S , ¾ �S , and ¸ �S can be expressed in terms of ! �6 S H ¨ @ ¨ » as in (A.9), the differential

operator
p � o p 	 � can be completely determined by using ! �S . The coefficients ! �S ( Ú 6 K S �R � 6 Ú S ) are given by (Beylkin, 1992)

! �S P S � ÊË Ì ! �6 S K MS ò $ 6»¨ ½ : � 6 ¨ @�: � ! �6 S @�6 ¨ H : K ! �6 S H 6 ¨ @�: �ÎÍ ÏÐ E (A.10)

and
ò @�6»S ½ @ ò]H 6 R � ! �S P � ÚsM � � ^ Ð E (A.11)

where
� 6 ¨ @�: is an autocorrelation of ~ � defined by� ² P S ò @ ² @�:» � ½ > ~ � ~ � H ² E Ä,PàM ETS1E5U5U5UIE&6 Ú9M U (A.12)

Thus, the autocorrelation coefficients
� ² with even indices are� > P � S1E � 6 ¨ÜP . E « PÇM ETS1E5U5U5U°E&6 o S Ú9M E (A.13)
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Fig. A.1. Illustration of the application of a matrix operator in non-standard form to a vector when Þ =3.

and the autocorrelation coefficients with odd indices are given by� 6 ¨ @�: P � ÚsM � ¨ @�: � �� l Ú «]�FÐ°� l K « ÚÅM �FÐ°� S « ÚÅM � E « PÇM ETS1E5U5U5UIETl£E (A.14)

where � � is� � P o � S`l Ú9M �FÐ� l Ú9M �FÐ Õ � @�: p 6 U (A.15)

The coefficients ! �S for
p � o p 	 � (̂ = integer) using Daubechies-6 and Daubechies-20

wavelets are given in Appendix A.3.

A.2 Application of a matrix operator to a vector and reconstruction to physical space

In this section, we describe the way to apply a matrix operator in i�� -form (see,

Appendix A.2) to a vector (e.g., wavefield) in wavelet space following Beylkin (1992).

Using (A.6) and applying a matrix operator in NS wavelet form to a vector
� �
	�� (e.g.,

horizontal (or, vertical) row in a displacement field, ^ th (or, _ th) row in Fig. 2.3), a vector� $ > � �î�
	�� can be represented in the wavelet basis by (Beylkin, 1992, see Fig. A.1)

� $ > � �î�
	�� P Ç»� ½ :
vx »¨ Ánß � 2 í Ïáàp � ¨  � * ¨ �
	�� K »S Ánß � 2 í Ï àâ � S � � * S �
	�� y{ E (A.16)

where i is a maximum number of scale level which can be achievable with a given

data set (i.e., ( £ is a null space) in the wavelet expansion, and thereby O � i . The

set ã 6 2 í Ï is composed of positive integers which are less than S £ @ � , namely ã 6 2 í Ï P-/. E M ETS1E5U5U5UIETS £ @ � Ú9M 0 .
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Fig. A.3. Reconstruction of the product of the matrix operator in NS-form and a vector to the physical space
V � .

As shown in Fig. A.1, the output wavelet coefficients ( àp � E àâ � ) contain both the wavelet

and scaling components, and thus a complex projection procedure (A.16) is required for

the reconstruction of the output vector ( $ > � ) in physical space. Therefore, it is desirable

to reorganize the output coefficients ( àp � E àâ � ) in the regular form of wavelet coefficients

(i.e.,
p � E â � ), which reflect the effects of only wavelet or scaling functions.

Additional multiresolution analysis is applied to the coefficient for the scaling

functions ( àâ � S � � * S �
	�� ), and these are decomposed into wavelet and scaling coefficients.

First, the àâ :S � : * S �
	�� are decomposed into ÿp 6¨  6 * ¨ �
	�� and ÿâ 6¨ � 6 * ¨ �
	�� , and then
p 6¨  6 * ¨ �
	��

and â 6¨ � 6 * ¨ �
	�� are formulated from the composite sums W àp 6¨ K ÿp 6¨ [  6 * ¨ �
	�� and� àâ 6¨ K ÿâ 6¨ � � 6 * ¨ �
	�� . Here, â 6¨ � 6 * ¨ �
	�� can also be decomposed recursively into
p Ñ ¨  Ñ * ¨ �
	�� andâ Ñ ¨ � Ñ * ¨ �
	�� in the wavelet bases (Fig. A.2). We iterate the procedure until  P O Ú§M and

finally we obtain a simplified expression for � $ > � �î�
	�� in wavelet bases:

� $ > � �î�
	�� P Ç»� ½ : »¨ Ánß � 2 í Ï p � ¨  � * ¨ �
	�� K »S Ánß � 2 í�� â ÇS � Ç * S �
	��FE (A.17)

where
p > ¨ corresponds to àp > ¨ . Finally, the operation on the vector ( $ > � ) in physical space

( (?> ) can be constructed by the usual wavelet reconstruction scheme (see, Fig. A.3).

A.3 Coefficients of NS-form of derivative operators

The coefficients ( ! 6S ) of the non-standard form (NS-form) of second order derivative

operator (
W 6Z ) for Daubechies-6 wavelets, can be obtained by solving simultaneous

equations in (A.10) and (A.11) using mathematical software (e.g., Mathematica), and are

given by! 6> P Ú Ò ) Ö Õ M`M S`S_^�Sâ) M Õ Ò . �\S_^M . S M`M ) Õ . Sâ)�)�)�^�S Õ .`.`. E ! 6: P Ò ^ M ^ Ö ^L�â)5ÀL�_^ . M ^ M ) Ò À<ÀJÀMIÖ ^L� Õ Ö À .`. S_^�^D)\S M ^ Õ M SJ� E
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! 66 P Ú S M Ò ÀD)�) Ö . Ö Ò ) Õ . ) Ö ^`S_^ Ò MÒ`Ò ^ . ^ Ò Ö .`. �_^�^ Õ`Õ Ò ÀJÀ�S<� . E ! 6Ñ P Ò Õ ) Õ M . Ö`Ö ) . Ö S Ò M5Ö Õ\Õ M5ÖMIÖ ^L� Õ Ö À .`. S_^�^D)\S M ^ Õ M SJ� E! 6Ó P Ú Ò`Ò Õ ) Ö Õ M SJ� Ö`Ö Sâ) M �`S Ö �â)Ö )5À M ÀD)\S . M`M ^JÀJÀJÀD)�) Ö � .\. E ! 6ì P M . ^JÀ Ò`Ò Õ �`S M À . ) . Ò S Ò SMIÖ ^L� Õ Ö À .`. S_^�^D)\S M ^ Õ M SJ� E! 6� P Ú Õ`Õ �J� Õ Ò À Ò �â) Ö Õ À . �_^Ö )5À M ÀD)\S . M`M ^JÀJÀJÀD)�) Ö � .\. E ! 6X P Ú �`S Ö`Ö ^ Ò � Õ M Õ )5À Õ^ Ö ÀJÀ Ò ÀJÀL�<ÀJÀL�J�J�J� Ò ^L� E (A.18)! 6� P Ú S Ò`Ò Ö . � Õ ÀL� MIÖ`Ö ÀD)Ö ) Ò ^D) Õ ÀL�<À Ò`Ò Õ S_^JÀ Õ .\.`. E ! 6� P ) . )�)5ÀL�J�`S Ò SS Ö ^ M S M ^ . �`S Ò ) Ö � Ò ÀD)5� E! 6:Ô> P ÚsM � M`M ^�^ ÒM`M ^ Ö . ^D) Ò � Ö`ÖeM`M )�^J� .\. E ! 6@ S Pº! 6S � R PÇM ETS1E5U5U5U°E M . �FE
where the coefficient ! 6S satisfies the relationship as! 6S P ª �@ � ���
	 Ú R � p 6p 	 6 ���
	�� p 	aE ÚsM . � R � M . U (A.19)

where ���
	�� is a scaling function. In the same way, we can obtain the coefficients ( ! ÑS E ! ÓS )

for third and fourth order of derivative operators:! Ñ> P . E ! Ñ: P S`S M`MIÖ � Ö � . M . S Ò Õ Ò Ö À^ Õ ^�S . À . M )\S M �â)\Sâ)<� E! Ñ6 P Ú Õ S . )�^ M Õ M À Ò . )�)<� Õ`Õ )�)S Õ S_^�^D)\SJ�`S Õ . )\S`S Ö S Õ . E ! ÑÑ P )5À Õ M . ) Ò`Ò . ^ . ) . Ò`Ò ÖM ) . ÀL�â) Õ`Õ Ò . ^JÀJÀ Ò . ^L� E! ÑÓ P ÚsM`M Ò ^D)�) Ò . Ö �J� Õ ^ . ^�S ÒS . S Õ ^D)�) M . Ò`Ò ^ Ò �J�\S .\. E ! Ñì P Ú � . Õ`Õ . ^L� . S ÖeM ) ÖÖ Ò S<À . � Ò Õ`Õ À M . Õ ÀJ� E! Ñ� P ^ M Ò Ö )5À M À�S`S M ÀJÀ�S Õ`Õ ^S M À Ö ^D)<�`Sâ) MIÖ`Ö � . Ò ÖeM5Ö .\. E ! ÑX P ÚsM Ò Ö S`S . M ^JÀ Ö � ÖSâ) M S . S`S_^ . Ö Ò`Ò . Ö � E (A.20)! Ñ� P )5À Õ )<� Õ . )5À ÒÖ ^ Õ Sâ)�)5À Ö Õ . S . Ö Õ Ö Õ E ! Ñ� P Õ`Õ S`S M`M À Õ^ . Õ .`. ) Ö Ò � Õ`Õ Ò �J� E! Ñ:Ô> P ÚsM . ÀJÀ�SJ�J�â)S Ò M Õ SJ�_^L� Õ Ö ) Ò � Õ À<À . E ! Ñ@ � PÇÚ<! Ñ� �  yPÇM ETS1E5U5U5U°E M . �FE
and ! Ó> P � Õ � Ò S Ò`Ò MIÖ ) Õ S<À M S ÒM Õ M . ^ . )<� M ) MIÖ Õ À . E ! Ó: P Ú S Ò �J�_^ Ö ^L� Ò � Ò . À Ò M Ò Ö) Ö Ò ÀD) Õ M Õ )�^ Ö � .`. � E! Ó6 P Ò À�S Ò ) . Ò ^ . Ò MIÖeM ) Ò Ö ��)S Õ`Õ`Õ Ò ^D)\Sâ) Ò Õ ÀJÀ . M5Ö . E ! ÓÑ P ÚsM S Õ`Õ .`. Õ �<ÀD)\Sâ) M S_^ ÖSJ� Õ Ö S Õ ) M �_^JÀJÀ Ò`Ò � E! ÓÓ P Ò`Ò M Ò À�S`S_^ M`MIÖ`Ö ÀL�J�\S ÒÕ ÀJÀJÀD)�^ Õ � Õ Ö ^D) Ö . Ò S . E ! Óì P M`M ÀD)<�<À�S<À Õ ^JÀD) .`. À) Ö Ò ÀD) Õ M Õ )�^ Ö � .`. � E! Ó� P ÚsM Ò À M`M S`S Õ Ò Õ Ö . Sâ)|À�^MIÖ S_^L�_^JÀ M À�S Ò SJ� Ò Õ\Õ . E ! ÓX P M SJ� Ò � Ò Õ . ^ Õ À Õ ÀM . ^ M S Õ ÀD)5À�S<À . ) M � E (A.21)! Ó� P Õ ^�^ M ^�^�^L�_^ Ö ÒSâ)�^ Ò �_^ Ö ÀJÀ Ò ^JÀ Ö Ò . Õ . E ! Ó� P Ú Sâ) Õ ÀJÀ�^�S MIÖM S M S Õ ^JÀ Ö Õ )<� Ö Ò � E! Ó:Ô> P Ò )<�<À�SJ� MÀ Ö S`S`S M S Ö . Õ À�^ Ö . E ! Ó@ � Pº! Ó� �  LPàM ETS1E5U5U5UIE M . �FU

Also, we provide the coefficients of the NS-form of derivative operator (
W

) based on the

Daubechies-20 wavelets. The coefficients ( ! :� E Ú Ò À �  � Ò À ) of the first order derivative

operator are given by! :> P .
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! :: PNÚ . U ^L� M S`S . SJ�<À MIÖ S<À . ÀJÀ MIÖ À�^L� Ò S�^ M5Ö ) . ^J� Ò`Ò Ö Ò ) Õ M`M �<À! :6 P . U Õ . ^�S Õ Ö`Ö ^ Ö ^ M . Ö Õ ^ Ò Õ S`S Ö ^`S<ÀJ� Õ\Õ À<À�^D)�) Ö )<� Õ . Ò`Ò S`S`S! :Ñ PNÚ . U�S M S`S . S Ò �`S Ò �<À M ) M S<�`S Õ M`M Ò Àâ)�)|À Ò ) M . �â)5�J��)�^ . �5ÀD) Õ! :Ó P . U M`M`M ) Õ`Õ À�S_^JÀ Õ ^ M )×S Ò �`S<À . Ö Õ � . Ò ^ . Õ Ö � Ö ^â) . ^ Õ M ��) . S Ò! :ì PNÚ . U . � Ö �J� Ö Ò � Ò Õ Ö ) Õ ) ^JÀ<À�S Ö ÀL� Õ M5Ö Ò Õ � ÖeM ^�^ Õ .`. � . S Õ MIÖ Ò`Ò! :� P . U . S Ö )�^�^ Ò Ö )�) Õ Ö ^ Ò Õ ^ . )\S Õ Ò M . Ò À`S_^ . À Õ . ^ Õ M )5À<À�^<À Õ Ö S M! :X PNÚ . U . M`M ) . S . S<À . ) Õ . Ò . S . Õ À . Ö Ò À Õ Ò Ö Ò SJ�5À�S<À Õ M Õ À Ö Ò À�^â) M Õ! :� P . U .`. Õ Ö � Õ M )�^ M ^L� . S M )|À . ^ Ò S\S Õ ÀJÀ M`M ^ Ö`Ö]M À<ÀJÀ Õ M Õ M Õ ^ Õ . À! :� PNÚ . U .`. MIÖ`Ö ^ Ò Õ S`S . S Ò M S M S M À .`. ) Ò Ö Õ �_^ Ö`Ö ^�^�S Õ . �`S�) Ö . Ö � M ^ Ò! ::Ô> P . U .`.`. � Ò Õ )�) M`M � Ò ÀJÀ Ö �5À Õ M Õ À Ö S�^ Õ Ò )�) Õ Ö �â) Ö ^ M S�^ .\. ^ Ö\Ö`Ö]M! ::J: PNÚ . U .`.`. M � M Õ Ò � Ö Õ )5À . Õ . Õ S5À�^�^â) . M Õ Sâ) M � M Õ ) M ��)\S5ÀD) ^ Õ M Õ`Õ ) Ö! ::´6 P . U .`.`.`. Ò ) Õ Ö S . M Sâ)�^ M . �`S_^ Õ M ^ Ò �`S5À M )5ÀL�<�_^<À M ^�^ Ò ^ Ö ^�S5À�^ Õ À! :: Ñ PNÚ )YU ^JÀ . Ö S ÖeM S Ò ) Ò M )�)�) M ) Õ � M Õ M`M ÀD)|À Ö � M Õ S Ò �_^<À Ö . S Õ Ö j M . @ �! :: Ó PÇM U Õ Ò ) Ö SJ� Ò S<À�^ Ò Õ ^ Ò Õ À Õ Sâ) . ) ^ Ò\Ò M\M`M5Ö ^ M SJ� Ò Ö\Ö Õ � .\. Ö Ò j M . @ �! :: ì PNÚ S1U M Ò ) . Õ �_^ Ò ^L� . À Õ S�)<� Õ Ö ) Õ À Ò )|À .\. Õ M Ò . �J� M Õ\Õ M Ò À<À Õ\Õ j M . @ÎX! :: � P S1U�� Ò S Ö À Ò`Ò`Ò`Ò Õ ) M Ò S Õ Ò ^ . ) . ) . Ö Sâ)×S . �â) Ò À Ò À . S M ^ Õ Ö S Ö j M . @ �! ::#X PNÚ S1U�Sâ) Õ À . � Õ`Õ S_^�^�S MIÖ À Õ\Õ Ò\Ò . Ò )<�5À . �_^â)�^ Ò Sâ) Õ Ö .`. S . À . À�j M . @ �! :: � PÇM U Õ`Õ`Õ S Ö � Õ M À�Sâ)�)�)5À<ÀL��)�)\S5À Ò Ö �5ÀD) . ) Ö � . Sâ)|À Õ Sâ) Õ ) ^�^L�Üj M . @�:Ô>! :: � PNÚÀÖ U Õ`Õ M À . � Õ � Õ . ÀJÀ . Õ ^D) Ò ) ÖeM . Sâ) . ) . ^ Õ M5Ö Ò Ö . ÀJ� Ò S`S\S`S�j M . @�:´6 (A.22)! :6 > P Ò U Õ`Õ � Ö Õ ^ . �J� ÖeMIÖ � Õ\Õ . �`Sâ)|À�S Õ Ö À Ö S Ö Sâ)�) Õ ��^D)|À�S\S Ò . S`SÜj M . @�: Ñ! :6F: PNÚsM U*) . À M . À Ö S`S<À�^ .`. ) Õ Ö Ò`Ò M SJ� Ò .\. Õ . ) Ò`Ò ^ . À<À . Ò S . Ö . Õ M j M . @�: Ó! :6J6 PNÚ �1U . Ö`Ö ^ . M`M S Õ � . )5À Õ\Õ À_^ Ò Ö S Õ �_^J�_^ Ö . )�^_^ Õ S M Ò À Ö ) M SJ��j M . @�: ì! :6 Ñ PÇM U . )�)\S<ÀD) Ò ) . � Ò . ) . M`M Õ . ) Ò À<À Ò �â) Õ Ò M À Ò Õ � Ò ��) Ö �J� M À Õ j M . @�: ì! :6 Ó PNÚ S1U . Ö .`. Ò Õ M )5À�^ M Ò M )�) Ö Õ Ò ÀD) Ò Ö Ò . Õ . M\M ^ Õ À Õ M Õ . S�^L� Ò M Õ j M . @�:#X! :6 ì PNÚsM U M Sâ) Õ Ò Ö )�^ Ö . �_^�^ Ò ^ Õ S_^<À�^ Ò . S\S M )<�\S`S�^�^D)×S<À . À Ò Ö À Ò À�j M . @�:#X! :6 � P Õ U*) M . Ö . S_^D) Ò M`M À Ò ^ Õ M Õ Ò � Ò M SJ� ÖeM\M ^_^�^ Ö Õ Ö ^L� Ö Ò . M ^�j M . @�: �! :6&X P �1U©ÀL�â) .`.`. � . �â) Õ . Õ �5ÀD)�)\S`S<� Õ ^D) . M � Ö . S_^ .`. Õ ) Õ S Ö À Õ ^�j M . @�: �! :6 � P ^]U��`S<À Ö Õ Ò S_^ Ö Ò S Õ`Õ`Õ M S5À M � Ò �5ÀD) Ö �\S Ö À�^ Õ ÀJÀ<ÀL�<� Õ S . � M j M . @�6J6! :6 � P S1U�S . ^ . Õ ^JÀ Ö À�^D)\S M`M )\S\S . S�^�S\S Ò ^ . ÀD) . M ^J� . Õ ^ Ö Ò M ^ M )5À�j M . @�6 Ó! :Ñ > P Ò U Ò`Ò �â) M`M Õ �<À Ò � . )\S M`M Ò )�) Õ � . ) . � Ö . S M Ò À�^`S . Ò ��^L� Õ`Õ Ò j M . @�6 �! :Ñ : PNÚ )YU Õ Ò`Ò Ö S Ò M Õ Ò Õ ÀJÀJÀD) . Ò S_^â)5ÀJÀ`S M ÀL�\S Ò . Õ ÀL�`S\SJ� Õ ^â)�^ . Ö j M . @�6 �
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! :Ñ 6 P�Ö U Ò ^�^ Õ ÀD)�) Õ Ò Ö S Ò � Ö . ^_^�^ M �_^`S`S Ö ^J�<À<À M ��) Õ �_^ Ò`Ò À M À Õ j M . @ Ñ >! :ÑJÑ PNÚ S1U*) Ò �J�â) Ò Õ ^�^JÀ Õ S M .\. S�^ Õ . À Õ . � Ò ^ M Õ �<À Ò ^JÀ Õ . ^�^ M`M . Õ S�j M . @ Ñ 6! :Ñ Ó PNÚsM U . Õ ) Ö �â)\S . Õ Ö ^JÀ�S Ò S M Ò À M )�^`S`S�)�)|ÀL� Ò M Õ Ö ^<ÀD)�)<�5À . ^ . Õ j M . @ Ñ �! :Ñ ì P Ò U Õ )\S M`M ^ . � Õ ) Ò Õ Ò Õ � Ö À . ^_^ . M S Ö S M S Õ M Àâ) M5Ö S . Ò\Ò Ö ^ Õ j M . @ Ó >! :Ñ � PÇM U�Sâ)�^ Ö ) Ö Õ Ò M )�) Õ Ö ^<À Ö À Ö ^ Ò À Ò � Ò Ö À�S5À�S . Ò ��^ M ^D)×S Õ Ö ) M j M . @ ÓJÓ! :Ñ X PNÚsM U Ö S Õ S`S Õ ^ . Ò ) Ò ^ . ��)�^`S`S Ò M ) Õ ^ ÖeM\M Õ �J�<� Ö )�) Õ Ö . Õ À M )×S�j M . @ ì 6! :Ñ � P )YU��_^D)�^D)\SJ�<À M À Ò ^L� Õ ^ Ò À M À Ò À<À Ö � . ) .\. ) M\M ^J�J�<�â) . ^ Ò`Ò j M . @ � ì! @ �ðPNÚ<!T� E M �  � Ò À]U
The coefficients of the second order derivative operator can also be computed in the same

way.



Appendix B
Procedure for ensemble average for wavefields

Stochastic random media are constructed by adding fractional fluctuation of physical

parameters to background media. The fractional fluctuation ( h®�j¾ q � ) is regarded as

stationary and isotropic, and distributed homogeneously in a medium. However, the

stochastic random heterogeneities appear to have locally inhomogeneous distribution

and biased effects are locally enhanced. Moreover, in a single scattering theory, the

scattering energy loss is determined by the sum of energy of first-order scattered waves,

which reflect the physical behaviour of specific heterogeneity. It is therefore convenient

to determine the energy loss in a statistically averaging scheme, and Sato (1984) and Wu

(1982) have introduced an ensemble averaging technique.

In this section, we derive ensemble-averaged wavefields to determine scattered energy.

First, we consider the ensemble average of the velocity fluctuations in (7.28):Ò Ý [ ´Ç´� Ý 6KÓ P « ÑÀ Y Ý ¾�Ý � � �\�Ês�� � 6j ª Á ª Á Ò h®�j¾ q �Ôh®�jÕ q � Ó ®°¯�± Ö � « Ð Ø X 3 �j¾ q Ú Õ q � ÚÙÈ 3 �j¾ q Ú Õ q �xÑ�Ú p � �j¾ q � p � �jÕ q �FEÒ Ý [ ´ Á¨ Ý 6�Ó P « Ñ ¸ ÑÀ Y Ý ¾�Ý � � ¨ �Ês�� � 6 (B.1)

j ª Á ª Á Ò h®�j¾ q �Ôh®�jÕ q � Ó ®°¯�± Ö � « Ð Ø X 3 �j¾ q Ú Õ q � Ú ¸ÅÈ 3 �j¾ q Ú Õ q �xÑ�Ú p � �j¾ q � p � �jÕ q �FE
where Ø X is the unit vector for the d axis direction and È is the unit vector for ¾ direction

in (7.18) and (7.19). We make a change of variables from ¾ q and Õ q to ¨ (center-of-mass

coordinate variable) and © (relative coordinate variable) by¨ P �j¾ q K Õ q � o S1E © P ¾ q Ú Õ q U (B.2)

Also, we introduce difference vectors
� � and

� ¨ to simplify the integrals for the radial
203
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and tangential ensemble average:
� � P Ø X ÚÙÈ P � Ú T5U�V/s1E M Ú:�xw T�s��FE Ý � �`Ý P SqT5U�V}�Ês o S��FE
� ¨ P Ø X Ú ¸ÅÈ P � Ú�¸ T5U�V s1E M Ú�¸Õ�xw T�s��FE Ý � ¨ Ý P È MvKß¸ 6 Ú S ¸Õ�xw T�s1U (B.3)

When we consider the integrals in (B.1) with variables ¨ and © , the integration over ¨
yields the area � and we can simplify the resulting equations using

� � and
� ¨ to the formÒ Ý [ ´Ç´� Ý 6KÓ P � « ÑÀ Y Ý ¾�Ý � � �\�Ês�� � 6 ª Á Ò h®�j¾ q �Ôh®�jÕ q � Ó ®°¯�± � � « � � 3 © � p � �<©a�FEÒ Ý [ ´ Á¨ Ý 6�Ó P � « ÑV¸�ÑÀ Y Ý ¾�Ý � � ¨ �Ês�� � 6 ª Á Ò h®�j¾ q �Ôh®�jÕ q � Ó ®°¯�± � � « � ¨ 3 © � p � �<©a�FU (B.4)

The integration over © is simple in a polar coordinate system � n q Ev�7q�� :n q P Ý © Ý¬E p � �<©a� P n q p n q p � q E (B.5)

and the ensemble of fluctuation
Ò h®�j¾�q��Ôh®�jÕ�q � Ó can be represented by the autocorrelation

function (ACF) iå� n q�� for the stochastic media. Therefore, (B.4) can be written using (B.3)

and (B.5) asÒ Ý [ ´Ç´� Ý 6KÓ P � « ÑÀ Y Ý ¾�Ý � � �\�Ês�� � 6 ª � ½ª�� ½ > ª ¡ » ½ ä¡ » ½ @7ä iå� n q � ®°¯�± o � S « n q T5U�V c s S f �xw T�� q p n q p n q p � q E (B.6)Ò Ý [ ´ Á¨ Ý 6 Ó P � « Ñ ¸ ÑÀ Y Ý ¾�Ý � � ¨ �Ês�� � 6 ª � ½ª�� ½ > ª ¡ » ½ ä¡ » ½ @7ä iå� n q � ®°¯�± � � « n q È MvKß¸ 6 Ú S ¸ �xw T�s �xw T�� q ¤ n q p n q p � q U
We can express the power spectral density Û for the stochastic medium in terms of iå���×�
through a two-dimensional Fourier transform, which can be recast as a Hankel transform

using the the representation of the zeroth order Bessel function ( Oe>`�
	�� ) as angular integral

over the exponential function (cf., Frankel & Clayton, 1986)ª ä@7ä ®°¯�± � � 	 �xw T7� q � p � q P S Y O�>`�
	��FE (B.7)Û �ã«]� P S Y ª �> iå� n q � n q O�>`�ã« n q � p n q U (B.8)

With these relations we can rewrite (B.6) asÒ Ý [ ´Ç´� Ý 6KÓ P « Ñ �À Y Ý ¾�Ý � � �\�Ês�� � 6 Û o S «ÚT5U�V s Sp UÒ Ý [ ´ Á¨ Ý 6�Ó P « Ñ ¸ Ñ �À Y Ý ¾�Ý � � ¨ �Ês�� � 6 Û � « È MvKß¸ 6 Ú S ¸Õ�xw T�s ¤ E (B.9)

where � �ã«]� is the power spectral density function (PSDF), the spectrum of the ACF iå� n � .



Appendix C
Derivation of theoretical attenuation variation for 2-D

SV-wave scattering

Following the procedure for the derivation of P-wave scattering attenuation in Section

7.3.1, we formulate the scattering attenuation rates of S waves ( � @�:Á ) as a function of

normalized wavenumber ( «�Ä � ) in 2-D random heterogeneous media.

When vertically incident ( d -axis direction) and horizontally polarized ( 	 -axis direction)

plane S waves (Fig. 7.4) are considered as the primary waves, they can be represented as[ >Z P�¦ � « ¨ B X @�¶ ¨ ¯ E [ > X P . E (C.1)

where " is an angular frequency, «�Ä the wavenumber of incident S waves ( "�o ¾ > ), and

¾ > the background S wave velocity. The scattered waves can be represented using

body forces
� Û� ( åP 	aEcd or 1,2) for the scattering effects from the variation of physical

parameters, as shown in (7.6). Thus, the body forces
� Û� can be computed by using (7.3)

and (C.1), and they are written in terms of the primary waves and the fluctuation of

physical parameters as� ÛZ PNÚ � « 6Ä � µ a ¾ 6> Úíµ e � Kå� «�Ä WW d � µ e � � [ >Z E � ÛX PNÚÀ� «�Ä WW 	 � µ e � [ >Z U (C.2)

Using the empirical relationship (7.8) among physical parameters, equation (C.2) can

be rewritten in terms of the fractional-fluctuation term h®�
	aEcdY� as� ÛZ PNÚ «�Ä ¾ 6> a�> c «�Ä � Á: h Kå�û� Á6 W hW d f ®°¯�± � � �ã«�Ä�d Ú " # � � E� ÛX PNÚÀ� «�Ä ¾ 6> a�> � 6 W hW 	 ®°¯�± � � �ã«�ÄYd Ú " # � � E (C.3)

where � Á: and � Á6 are constants given by� Á: PNÚ S1E � Á6 P á K S1U (C.4)

Hereafter we use symbols without the subscript 0 representing the background medium

for simplicity in the mathematical expressions.
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Displacement fields, generated by body forces (
� Û¨ , « = 	aEcd or 1,2) which are induced by

perturbation of physical properties, can be expressed using the Green tensor ½ � ¨ �j¾ïE¢¾Çq � :[ Û� �j¾�� P 6»¨ ½ : ª À � Û¨ �j¾ q � ½ � ¨ �j¾ïE¢¾ q � p ¿}�j¾ q �FE  LPàM ETS1E (C.5)

where ¿ is the inhomogeneity area. With the far-field Green’s functions (7.20), we can

obtain scattered P (
[ Á ´� ) and S (

[ ÁâÁ� ) waves at sufficiently large distances where near- and

intermediate-field waves are not effective. The far-field scattered wavefields are given by[ Á ´� P «�·¸ 6 À Y Ý ¾�Ý ®°¯�± � ÚÀ� � " #�Ú «�·aÝ ¾�Ý K Y Õ � ¤ 3 � ÚÀ� «�Ä � Á: å ´� : �Ês�� ª À h ¦ � ¨Fµ « Ï X @3ÌDÍ Î » ¯ p ¿}�j¾ q �K � Á6 å ´� : �Ês�� ª À W hW d ¦ � ¨Fµ « Ï X @3ÌDÍ Î » ¯ p ¿}�j¾ q � Kr� Á6 å ´� 6 �Ês�� ª À W hW 	 ¦ � ¨Fµ « Ï X @3ÌDÍ Î » ¯ p ¿}�j¾ q � � E (C.6)

and [ ÁâÁ� P «�Ä
À Y Ý ¾�Ý ®°¯�± � ÚÀ� � " #�Ú «�Ä�Ý ¾�Ý K Y Õ � ¤ 3 � ÚÀ� «�Ä � Á: å Á� : �Ês�� ª�À h ¦ � ¨ B « X @3ÌDÍ Î » ¯ p ¿}�j¾ q �K � Á6 å Á� : �Ês�� ª À W hW d ¦ � ¨ B « X @3ÌDÍ Î » ¯ p ¿}�j¾ q � Kr� Á6 å Á� 6 �Ês�� ª À W hW 	 ¦ � ¨ B « X @3ÌDÍ Î » ¯ p ¿}�j¾ q � � E (C.7)

where ¸ is ` o ¾ and s is the angle between the direction of incident waves and scattered

wave propagation direction. Also, å ¨� � ( � E  =1,2, « =P,S) is given in (7.21).

The integrations for the partial differentials of h in (C.6) and (C.7) can be simplified

using partial integration. The resultant equations are given by[ Á ´� P�� « Ñ·¸ 6 À Y Ý ¾�Ý Ð Ú�¸»� Á: å ´� : �Ês�� K � �xw T�s Ú ¸ � � Á6 å ´� : �Ês�� K T5U�V s � Á6 å ´� 6 �Ês�� Ñ
j ®°¯�± � ÚÀ� � " #�Ú «�·aÝ ¾�Ý K Y Õ � ¤ ªQÀ h ¦ � ¨Fµ « Ï X @3ÌDÍ Î » ¯ p ¿}�j¾ q �FE (C.8)

and [ ÁâÁ� P�� « ÑÄ
À Y Ý ¾�Ý�Ð Úï� Á: å Á� : �Ês�� K � �xw T�s Ú9M � � Á6 å Á� : �Ês�� K T5U�V s � Á6 å Á� 6 �Ês��xÑ

j ®°¯�± � ÚÀ� � " #�Ú «�Ä�Ý ¾�Ý K Y Õ � ¤ ªQÀ h ¦ � ¨ B « X @3ÌDÍ Î » ¯ p ¿}�j¾ q �FU (C.9)

The scattered P and S waves can be considered on a single component (radial or

tangential) by rotation of the coordinate axes (e.g., Sato & Fehler, 1998):[ Á ´� P T5U�V/s [ Á ´Z K;�xw T�s [ Á ´XP�� « Ñ·¸ 6 À Y Ý ¾�Ý � Á� �Ês�� ®°¯�± � ÚÀ� W " #�Ú «�·aÝ ¾�Ý K Y Õ [ ¤ ª�À h ¦ � ¨Fµ « Ï X @3ÌDÍ Î » ¯ p ¿}�j¾ q �FE[ ÁâÁ¨ P+�xw T�s [ ÁâÁZ Ú T5U�V s [ ÁâÁX (C.10)
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P�� «�ÑÄ
À Y Ý ¾�Ý � Á¨ �Ês�� ®°¯�± � ÚÀ� W " #�Ú «�Ä�Ý ¾�Ý K Y Õ [ ¤ ªQÀ h ¦ � ¨ B « X @3ÌDÍ Î » ¯ p ¿}�j¾ q �FE

where � Á� �Ês�� and � Á¨ �Ês�� are� Á� �Ês�� P T5U�V s Ð Ú�¸»� Á: å ´ :J: �Ês�� K � �xw T�s Ú ¸ � � Á6 å ´ :J: �Ês�� K T5U�V s � Á6 å ´ :´6 �Ês��xÑK¯�xw T�s Ð Ú�¸»� :5å ´ 6F: �Ês�� K � �xw T�s Ú�¸ � � Á6 å ´ 6F: �Ês�� K T5U�V s � Á6 å ´ 6J6 �Ês��xÑÀE� Á¨ �Ês�� P+�xw T�s Ð Úï� Á: å Á :J: �Ês�� K � �xw T�s Ú9M � � Á6 å Á :J: �Ês�� K T5U�V s � Á6 å Á :´6 �Ês��xÑÚ T5U�V/s Ð Úï� Á: å Á6F: �Ês�� K � �xw T�s Ú9M � � Á6 å Á6F: �Ês�� K T5U�V s � Á6 å Á6J6 �Ês�� Ñ U (C.11)

To get an average scattered energy, we consider the ensemble average for the

displacement terms:�NÝ [ Á ´� Ý 6 | P « Ñ·¸ 6 À Y Ý ¾�Ý � � Á� �Ês�� � 6j ª�À�ªQÀ �óh®�j¾ q �Ôh®�jÕ q �	| ®°¯�± Ö � «�· Ð ¸ Ø X 3 �j¾ q Ú Õ q � ÚÙÈ 3 �j¾ q Ú Õ q �xÑ�Ú p ¿}�j¾ q � p ¿}�jÕ q �FE�NÝ [ ÁâÁ¨ Ý 6 | P « ÑÄ
À Y Ý ¾�Ý � � Á¨ �Ês�� � 6 (C.12)

j ª À ª À �óh®�j¾ q �Ôh®�jÕ q �	| ®°¯�± Ö � «�Ä Ð Ø X 3 �j¾ q Ú Õ q � ÚÙÈ 3 �j¾ q Ú Õ q �xÑ�Ú p ¿}�j¾ q � p ¿}�jÕ q �FE
where Ø X is the unit vector for the d axis direction. Following the procedure described in

the Appendix B, we can rewrite (C.12) using the power spectral density function Û �ã«]� as�NÝ [ Á ´� Ý 6 | P « Ñ· ¿¸ 6 À Y Ý ¾�Ý � � Á� �Ês�� � 6 Û � «�· È MvKß¸ 6 Ú S ¸ �xw T�s ¤ E
�NÝ [ ÁâÁ¨ Ý 6 | P « ÑÄ ¿

À Y Ý ¾�Ý � � Á¨ �Ês�� � 6 Û o S «�Ä}T5U�V s Sp U (C.13)

The derivation of (C.13) from (C.12) is described in detail in the Appendix . Since � @�:Á
corresponds to the energy loss per unit area divided by wavenumber, we can express� @�:Á in terms of the standard deviation ( ³ ) of velocity fluctuation in the 2-D media by� @�:Á³ 6 P M¿«�Ä ª § Ð �NÝ [ Á ´� Ý 6 | K �NÝ [ ÁâÁ¨ Ý 6 |IÑ pâá E (C.14)

where
á

is the arc length through which scattered waves propagate and therefore
pâá

is

given by n p s (Frankel & Clayton, 1986).

In order to determine a reasonable approximation for � @�:Á , we consider the travel-time

correction proposed by Sato (1984), which excludes the forward scattering energy inside

the minimum scattering angle, with an idea that the travel time fluctuations are caused

by longer wavelengths than the incident wavelength in a perturbed medium and cause

scattering energy increase in the forward direction. Since the scattered angles of SP
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SS
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S SS
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Surface of heterogeneity

∆φ=φ
P 

− φ
S

Fig. C.1. Diagram for determining the minimum scattering angle for S waves using the Snell’s law. A specific
situation is considered for the determination of ©KÝxÜÞ�ß à in terms of ©xÝxÝÞ�ß à ; S wave is incident with angle   Ý on
the surface of heterogeneity for the perpendicular axis to the surface and SS scattered waves is reflected on
the surface with angle ©�ÝxÝÞ�ß à for the incident direction ( Ø -axis direction in this study). The SP scattered wave
is reflected on the surface with angle   Ü for the perpendicular axis and ©�ÝxÜÞ�ß à for the incident direction.

and SS waves from a heterogeneity are different, we introduce s Á ´ª<« ¬ for the P-wave

type scattering and sâÁâÁª<« ¬ for the S-wave type scattering. Therefore we can represent the

theoretical � @�:Á with the travel-time correction as� @�:Á³ 6 P n¿«�Ä ç ª 6¢ä�@ § ÝxÜÞ�ß à§ ÝxÜÞ�ß à �NÝ [ Á ´� Ý 6 | p s K ª 6¢ä�@ § ÝxÝÞ�ß à§ ÝxÝÞ�ß à �NÝ [ ÁâÁ¨ Ý 6 | p s é U (C.15)

When Ý ¾�Ý is large enough, we can assume Ý ¾�ÝQå n . Also, sDÁ ´ª<« ¬ can be represented in terms

of s�ÁâÁª<« ¬ by using the Snell’s law. When we consider the SS scattered waves which are

reflected with the minimum scattering angle sDÁâÁª<« ¬ from the boundary of heterogeneity, the

corresponding reflection angle of SP scattered waves can be calculated with consideration

of the single scattering idea as (see, Fig. C.1)s Á ´ª<« ¬ P s ÁâÁª<« ¬ Ú �}��E (C.16)

where �}� P � ´ Ú � Á and � � ( LP�� Ed� ) is� Á P Y,Ú s ÁâÁª<« ¬S E � ´ P T5U�V @�: � ¸ T5U�V/� Á ��U (C.17)

Thus, the theoretical scattering variation is given by� @�:Á³ 6 P « 6Ä
À Y�¸ ì ª 6¢ä�@ § ÝxÜÞ�ß à§ ÝxÜÞ�ß à � � Á� �Ês�� � 6 Û o «�Ä¸ È MvKß¸ 6 Ú S ¸Õ�xw T�s p p sK « 6Ä
À Y ª 6¢ä�@ § ÝxÝÞ�ß à§ ÝxÝÞ�ß à � � Á¨ �Ês�� � 6 Û o S «�ÄIT5U�V s Sp p s1U (C.18)



Appendix D
Derivation of theoretical attenuation variation for 2-D

SH-wave scattering

Theoretical scattering attenuation expressions of 2-D SH waves are derived following the

scheme in Section 7.3.1. The 2-D SH wave equation is given bya W 6 [�bW # 6 Ú WW 	 c�e W�[�bW 	 f Ú WW d c�e W�[�bW d f P � b E (D.1)

where
[�b

is the SH displacement, e the shear modulus, and
� b

is the body force which

is zero in steady state. SH waves (
[ >b ) polarized in the b direction are incident in the d

vertical direction,[ >b P�¦ � « ¨ B X @�¶ ¨ ¯ E (D.2)

where «�Ä is the wavenumber of SH waves, " the angular frequency, and " can be

expressed as «�Ä ¾ where ¾ P È e o a . The perturbation of the wave velocity and the density

is governed byh®�
	aEcdY� P µ ¾¾ > P Má µ aa�> E (D.3)

where á is a constant controlling the density perturbation rate. Thus, from (D.3), µ e andµ a can be represented byµ e P ¾ 6> a�>`� S K á �Ôh]E µ a P á a�>°h]U (D.4)

The induced force (
� Ûb ) by the perturbation of wave velocity and the density is� Ûb P � a�> K¶µ a1� W 6 [ >bW # 6 Ú WW 	 n � e > K¶µ e � W�[ >bW 	×p Ú WW d n � e > K¶µ e � W�[ >bW d�p E (D.5)

and (D.5) can be simplified as� Ûb PNÚ ¾ 6> a�> c � ^: « 6Ä h Kå�û� ^6 «�Ä W hW d»f ¦ � « ¨ B X @�¶ ¨ ¯ E (D.6)

where � ^: PNÚ S and � ^6 P á K S .
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The Green’s function for the 2-D SH wave equation is given by (Arfken, 1986, p912)½*�j¾ïE¢¾ q � P �Õ ¾ 6> a�> � « : ¯> �ã«�Ä�Ý ¾ Ú ¾ q ÝÞ�FE (D.7)

where ¾ is the receiver location, ¾�q the source location, and � « : ¯> is the zeroth-order

Hankel function of the first kind. The � « : ¯> �ã«�Ä�Ý ¾ Ú ¾Çq´ÝÞ� can be expressed in the asymptotic

form as

� « : ¯> �ã«�Ä�Ý ¾ Ú ¾ q ÝÞ� P SY «�Ä�Ý ¾�Ý ®°¯�± � � W «�Ä�Ý ¾�Ý Ú «�Ä È 3 ¾ q Ú Y Õ [ ¤ E (D.8)

where È is the unit vector in ¾ direction.

The scattered waves (
[ Ûb ) developed by the perturbation can be expressed using both

the Green’s function and the induced force:[ Ûb �j¾�� P ªQÀ � Ûb �j¾ q �¢½*�j¾ïE¢¾ q � p ¿}�j¾ q �FU (D.9)

Thus the scattered waves are given by[ Ûb PNÚÀ� «�ÑÄ
À Y Ý ¾�Ý ®°¯�± � Ú W " #�Ú «�Ä�Ý ¾�Ý K Y Õ [ ¤

j � � ^: Kr� ^6 � M<Ú:�xw T�s�� � ª À h®�j¾ q � ®°¯�± � � «�Ä��Dd ÚÙÈ 3 ¾ q � � p ¿}�j¾ q �FE (D.10)

where s is the angle between vertical axis (incident direction) and wave propagation

direction.

In order to estimate the energy of scattered waves, we measure the ensemble average

of the waves:Ò Ý [ Ûb Ý 6 Ó P « ÑÄ
À Y Ý ¾�Ý � � ^: Kr� ^6 � M<Ú:�xw T�s�� � 6

j ª À ª À Ò h®�j¾ q �Ôh®�jÕ q � Ó ®°¯�± � � «�Ä - Ø X 3 �j¾ q Ú Õ q � ÚÙÈ 3 �j¾ q Ú Õ q � 0 � p ¿}�j¾ q � p ¿}�jÕ q �FE (D.11)

where Ø X is the unit vector for the d axis direction. Here (D.11) can be expressed in terms

of power spectral density function Û �ã«]� :Ò Ý [ Ûb Ý 6KÓ P « ÑÄ ¿
À Y Ý ¾�Ý � � ^: Kr� ^6 � M<Ú:�xw T�s�� � 6 Û c S «�Ä}T5U�V s S f U (D.12)

The scattering attenuation rate � @�:Á ^ is estimated by the energy loss per unit area

divided by wavenumber and the solid angle ( Y ):� @�:Á ^ P ³ 6Y ¿«�Ä ª § Ò Ý [ Ûb Ý 6KÓ pâá E (D.13)

where
á

is the arc length,
pâá

corresponds to n p s and ³ is the standard deviation of
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velocity fluctuation ( h ). Here, since the receiver is considered to locate at a far distance

compared to the scatterers (i.e., Ý ¾�Ý�Æ Ý ¾�q´Ý ), n can be approximated by Ý ¾�Ý .
By considering the travel-time correction with introduction of the minimum scattering

angle ( sXª<« ¬ ), the scattering attenuation rate is given by� @�:^³ 6 P « 6Ä
À Y 6 ª 6¢ä�@ § Þ�ß à§ Þ�ß à � � ^: K0� ^6 � M Ú:�xw T�s�� � 6 Û c S «�Ä}T5U�V s SZf p s1U (D.14)
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