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A B S T R A C T

Seismic activity and focal mechanisms are governed by the effective stress field that is a combined result of
regional tectonic processes and local stress perturbation. This study investigates the regional variation in the
stress field in the eastern continental margin of the Eurasian plate around the Korean Peninsula and Japanese
islands using a damped stress inversion technique based on the focal mechanism solutions of regional
earthquakes. The dominant compressional stress is directed ENE–WSW around the Korean Peninsula and
eastern China, E–W at the central East Sea and northern and southern Japan, NW–SE at central Japan, and
N–S around the northern Nankai trough. The dominant compression direction changes rapidly in the East
Sea and Japanese islands, which may be due to the combined effects of tectonic loading in the subduction
zones off the Japanese islands and the India-Eurasia plate boundary. The crustal stress fields around the
subduction zones off the Japanese islands present characteristic depth-dependent orientations. The orienta-
tions of the largest horizontal stress components, sH, in the subduction zones are subparallel with the plate
convergence directions at shallow depths. The sH orientations are observed to rotate clockwise with the
depth owing to slab subduction and lithospheric deformation. The regional stress field around the Japanese
islands was perturbed temporally by the 2011 M9.0 Tohoku-Oki megathrust earthquake. The regional stress
field was recovered in a couple of years. The stress field and tectonic structures are mutually affected,
causing stress field distortion and a localized mixture of earthquakes in different faulting types.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Seismic activity is a result of medium response to ambient stress
field that is primarily influenced by regional tectonics. The seismic
hazard potentials of region are highly dependent on the regional
stress field. Long-term stress loading produces earthquakes even in
paleotectonic structures (Choi et al., 2012; Hong and Choi, 2012). It
was indicated that local stress field vary before large earthquakes
and volcanic eruptions (e.g., Roman et al., 2004; Bohnhoff et al.,
2006). Also, large earthquakes and volcanic eruptions may perturb
the regional stress field, which may cause changes in seismicity
properties. It is crucial to understand the evolution of stress field to
assess the seismic hazard potentials.

The composition of the stress components controls the faulting
style. The vertical stress component in a stable intraplate region
is mainly controlled by the gravity of the overburden medium.
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The horizontal stress component is influenced by tectonic loading.
Crustal structures and existing faults may distort the ambient stress
field locally (Bosworth and Strecker, 1997; Sassi and Faure, 1996;
Homberg et al., 1997; Andeweg et al., 1999; Arlegui and Simón, 2001;
Rivera and Kanamori, 2002; Yale, 2003; Vavryčuk, 2011). The local
stress field may vary by location.

We can infer the ambient stress field from geological data (e.g.,
fault slip), focal mechanism solutions, and in-situ field measure-
ments (Zoback and Zoback, 1980; Stock et al., 1985; Mount and
Suppe, 1987; Obara et al., 2000; Zoback et al., 2003; Lin et al., 2010;
Lin et al., 2011). However, it is difficult to estimate the representative
regional stress field from a single observation. We may determine the
representative regional stress fields from focal mechanism solutions
(Assumpcao, 1992; Abers and Gephart, 2001; Balfour et al., 2005;
Choi et al., 2012; Heidbach et al., 2010; Macchiavelli et al., 2012).

Michael (1984, 1987) solves a linearized problem with the
assumption that shear tractions are comparable on rupture planes
(SLFAST). The Focal Mechanism Stress Inversion method (FMSI)
searches for the best-fitting stress parameters (Gephart and Forsyth,
1984; Gephart, 1990). Similarly, a damped stress inversion technique
searches for a stress tensor that minimizes the error over the
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Fig. 1. (a) Map of the region around the Korean Peninsula and Japanese islands. The major tectonic structures are presented. The depths of subducting slabs are marked with
contours. The plate convergence directions and speeds are presented. (b) Spatial distribution of focal mechanism solutions of events. Two trench regions (A, B) are marked with
solid lines. (c) Numbers of events over the discrete cells of a region. The numbers are high in the Japanese islands and Korean Peninsula.

observed fault plane solutions (Hardebeck and Michael, 2006). A
formal stress inversion (FSI) method performs a composite analysis
of independent focal mechanism solutions (Martínez-Garzón et al.,
2014).

The eastern margin of the Eurasian plate around the Korean
Peninsula and Japanese islands experience complex tectonic pro-
cesses including plate convergence and lithospheric counter-
response, comprising a laterally varying stress field. We investigate
the representative regional stress field around the Korean Penin-
sula and Japanese islands, which may be crucial for the mitigation of
seismic hazards.

2. Geology and tectonics

The eastern margin of the Eurasian plate around the Korean
Peninsula and Japanese islands is encompassed by the Okhotsk plate,
Pacific plate, and Philippine Sea plate (Fig. 1). The Pacific plate
and Philippine Sea plate are convergent with the Okhotsk plate
and Eurasian plate in the eastern offshore of the Japanese islands
(Hashimoto et al., 2009; Huang et al., 2011). Japan trench and Nankai
trough are placed on the convergent boundaries. The northern half of
the Japanese islands belong to the Okhotsk plate, and the other half

is placed in the Eurasian plate. The convergence rate of the Pacific
plate in the Japan trench is ∼91 mm/yr, and that of the Philippine Sea
plate is ∼50 mm/yr (Seno et al., 1993; Ide, 2013). The plate conver-
gence environment constructs a compressional stress regime over
the eastern Eurasian plate.

The stresses induced from the plate convergent boundaries are
transmitted into the Japanese islands and Korean Peninsula, causing
high seismicity in northern China and the Japanese islands (Liu et al.,
2007). On the other hand, the seismicity is mild in southern China
and the Korean Peninsula (Brantley and Chung, 1991; Liu, 2001;
Hong and Choi, 2012). Shallow seismicity is rarely observed in the
East Sea (Sea of Japan) and northeastern Korean Peninsula.

The Pacific plate reaches at a depth of 660 km near the east coast
of the Korean Peninsula and moves laterally over the 660-km discon-
tinuity (Lee et al., 2014; Revenaugh and Sipkin, 1994; Tonegawa et
al., 2005; Zhao et al., 2009). The frontal margin of the Philippine Sea
plate is located at a depth of 200 km beneath the southern Japanese
islands. The dipping angles of the subducting Philippine Sea plate are
gentle and as low as <10◦ to 20◦ beneath the Shikoku and Chugoku
islands and increase to >50◦ beneath Kyushu (Furumura et al., 2014).
Active volcanoes construct a volcanic arc on the Japanese islands that
is subparallel with the trench axes (Furumura et al., 2014).

3. Methods

We identify the fault type from the geometry of the compressional (P), tensional (T), and null (B) axes of the stress field (Frohlich, 1992;
Hong and Choi, 2012). We define that strike–slip events have dip angles with respect to the B axes greater than 60◦, normal-faulting events
have dip angles with respect to the P axes greater than 60◦, and reverse events have dip angles with respect to the T axes greater than 50◦. The
other events are classified to be odd-faulting events that may result from a combination of two or three focal mechanisms.

The P, T, and B axes are defined to be (Aki and Richards, 1980; Gasperini and Vannucci, 2003)

pi =
ni − di√

2
,

ti =
ni + di√

2
, (1)

bi = eijknjdk,
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where p is the unit P-axis vector, t is the unit T-axis vector, b is the unit B-axis vector, n is the unit vector normal to the fault plane, d is the
unit slip vector, and e is the unit azimuth vector.

We calculate a regional stress field from the fault mechanism solutions of regional earthquakes using the spatial and temporal stress inver-
sion (SATSI) algorithm with a damped inversion method that simultaneously inverts the stress in all subregions while minimizing of the
difference in the stresses between adjacent subregions (Hardebeck and Michael, 2006; Martínez-Garzón et al., 2014). The method implements
a bootstrapping technique to determine the representative stress components for a set of focal mechanism solutions. The bootstrap analysis
produce randomly resampled data sets with an allowance for duplicate selections, which enables us to examine the stability of the inver-
sion results (e.g., Efron and Tibshirani, 1986; Hong and Menke, 2008). The SATSI algorithm is useful for the construction of a representative
continuous stress field over a wide region.

The observed focal mechanism solutions d satisfy

d = Gm, (2)

where G is the data kernel matrix, and m is the representative stress tensor. The vector d can be written in terms of unit slip vectors:

d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u11

u12

u13

· · ·
uK1

uK2

uK3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where uki (i=1, 2, 3) is the i-directional component of the unit slip vector for event k, and K is the number of events. The matrix G is given by

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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11 + n11n2
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, (4)

and the vector m is

m =

⎛
⎜⎜⎜⎜⎝

t11

t12

t13

t22

t23

⎞
⎟⎟⎟⎟⎠

, (5)

where nkj is the j-directional component of the unit fault normal vector of event k, and tlm (l, m =1, 2, 3) is the stress tensor component. Here,
t33 = −(t11 + t22) is assumed (Hardebeck and Michael, 2006).

We apply a Gaussian elimination approach to calculate a set of least-squares solutions that are tested using a bootstrap analysis. We
determine a representative moment tensor solution that minimizes the error among the set of solutions. The principal stress components are
composed of two horizontal components (sH > sh) and a vertical component (sV). The stress composition of a strike–slip event satisfies the
condition sH > sV > sh, that of a reverse event satisfies the condition sH > sh > sV, and that of a normal-faulting event satisfies the
condition sV > sH > sh. We deduce the maximum horizontal stress field from the horizontal stress components of events.

The stress ratio R presents the composition of stress components (e.g., Bohnhoff et al., 2006; Hong and Choi, 2012):

R =
s1 − s2

s1 − s3
, (6)

where s j (j = 1, 2, 3) is the magnitude of a principal stress component (s1 > s2 > s3). Here, the situation in which R > 0.5 suggests a
transpressional regime, and that with R < 0.5 indicates a transtensional regime (Bohnhoff et al., 2006).
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Fig. 2. Long-period waveform inversion of three events around the Korean Peninsula: (a) the 17 May 2013 ML3.5 earthquake, (b) the May 18, 2013 ML3.9 earthquake, and (c) the
11 September 2013 ML4.0 earthquake. The observed seismic waveforms are compared with synthetic waveforms. A map of stations and the inverted focal mechanism solutions
are presented. The variance reduction as a function of the depth is displayed.

4. Data

We collect the focal mechanism solutions of earthquakes from
available resources including the Global CMT catalog, F-net catalog,
and earlier studies. The Global CMT catalog contains the information
of events with magnitudes greater than or equal to 4.7 during 1976–
2016. The F-net catalog includes events with magnitudes greater
than or equal to 3.1 during 1997–2016. The focal mechanism solu-
tions of local seismic events with magnitudes greater than ML 1.8
around the Korean Peninsula are available in earlier studies (Choi
et al., 2012; Hong et al., 2015). We constrain the focal depths of
events to be less than 40 km to deduce the crustal stress field.
The number of focal mechanism solutions collected in this study is
12,028.

The spatial coverage of the available data is dense over the region
around Japanese islands, and low over the Korean Peninsula (Fig. 1).
Moreover, only a few shallow-focus earthquakes are available in the
East Sea (Sea of Japan). We additionally analyze three events around
the Korean Peninsula using a long-period waveform inversion (Fig. 2;
Table 1). We implement a 1-D velocity model (Kennett et al., 1995).

The strike–slip events are dominant in the regions around the
Korean Peninsula, the southern Japanese islands, and off the east
coast of the central and northern Japanese islands (Fig. 3). Reverse
earthquakes occur over the central and northern Japanese islands
and around the subduction zones of the Pacific plate. Normal-faulting
earthquakes are observed around the subduction zones of the Pacific
plate.

5. Analysis

The number of available data points is low around the Korean
Peninsula owing to low seismicity (Fig. 1). We discretize the study
region by 2◦ -by-2◦ cells that overlap with adjacent cells by 1.0◦
in longitude and latitude. The regional stress field in each cell is
assumed to be homogeneous. We invert the regional stress field
(s1 > s2 > s3) from the focal mechanism solutions of events with
focal depths less than 40 km using SATSI (Fig. 4).

We identify the horizontal and vertical stress components from
the magnitudes and plunges of the inverted stress components. A

Table 1
Source parameters and fault-plane solutions of regional earthquakes around the Korean Peninsula that were analyzed additionally using long-period waveform inversion.

Date Time Lat Lon Dep ML Mw Strike Dip Rake N
(yyyy-mm-dd) (hh:mm:ss) (◦ N) (◦ E) (km) (◦) (◦) (◦)

2013-05-17* 18:00:58* 37.675§ 124.610§ 6† 3.5* 3.6† 105† 85† −29† 6
2013-05-18* 02:45:15* 37.677§ 124.630§ 5† 3.9* 4.0† 280† 90† 20† 7
2013-09-11* 04:00:31* 33.56* 125.39* 8† 4.0* 3.7† 40† 88† 175† 7

ML: local magnitude.
Mw: moment magnitude.
N: number of data points used for waveform inversion.

∗ : parameter collected from an earthquake catalog of a local institute (KMA).
§ : parameter determined by a locationing method (HYPOINVERSE).
† : parameter determined by waveform inversion.
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Fig. 3. Spatial distribution of earthquakes: (a) strike–slip events, (b) reverse events, (c) normal-faulting events, and (d) odd-faulting events. Strike–slip events are dominant in
the region around the Korean Peninsula. Normal-faulting events are observed in the trench regions and east coast of the Japanese islands. Reverse events are dominant around
the Japanese islands.

pure vertical stress component (sV) has a plunge around 90◦, and
pure horizontal stress components (sH > sh) have plunges of ∼0◦.
The plunges of s1 are generally populated at low angles (<20◦),

suggesting sH (Fig. 5). The dominant plunges of s2 and s3 are at low
and high angles (<20◦, >70◦). The feature suggests that s2 and s3

are either sh or sV.
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Fig. 4. Stress components inverted from the focal mechanism solutions of regional earthquakes. The sets of inverted stress components from a bootstrap analysis are presented,
and the best-fit result is marked with crosses.
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σ
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Fig. 5. Distribution of plunges of inverted stress components (s1,s2,s3). The plunges
of s1 are populated at angles less than ∼20◦ . The plunges of s2 and s3 are clustered
at angles less than ∼20◦ and greater than ∼70◦ .

We find that stress field inversions based on small numbers (<8)
of data points may produce unstable results (Hardebeck and Michael,
2006). We verify the stability of the inverted stress components
using a bootstrap analysis (Efron and Tibshirani, 1986). We gener-
ated 2000 bootstrap resampled data sets. The best-fit solutions are
determined in 95% confidence level. Fig. 6 presents the errors of
stress-component orientations from bootstrap analysis. The standard
errors of s1 are small in most regions, ranging between 0.37◦ and
1.99◦ around the Korean Peninsula and Japanese islands. The aver-
age is 0.95◦ and the standard deviation is 0.38◦. The observation
suggests that the s1 orientations are determined stably from the
inversion.

The standard errors of s2 are small around the central Japan,
and those of s3 are small around the Korean Peninsula. The stan-
dard errors of s2 range between 0.69◦ and 6.89◦ around the central
Japan. The average is 2.54◦ and the standard deviation is 1.96◦. The
standard errors of s3 range between 0.53◦ and 1.95◦ around the
Korean Peninsula. The average is 0.84◦ and the standard deviation is
0.25◦. The small standard errors suggest stable determination of the
stress components. We, however, find that the inverted s2 presents
large standard errors around the Korean Peninsula and southern
and northern Japanese islands. Also, the inverted s3 displays large
standard errors in the northern Japanese islands.

We examine the spatial resolution and accuracy of inverted stress
fields by comparing the results between different grid systems. We
invert the stress fields based on 1◦ -by-1◦ cells for the region around
the Japanese islands where a large number of event data sets are

available (Fig. 7). We observe that the results based on 2◦ -by-2◦
cells with a 1◦ overlap with adjacent cells are consistent with those
based on 1◦ -by-1◦ cells. This observation suggests that an inversion
based on 2◦ -by-2◦ cells may allow a reasonable presentation of the
regional stress field even in the plate margin around the Japanese
islands.

6. Regional stress field

We observe that the stress ratios R are generally greater than
0.5 (i.e., transpressional) in the regions dominated by reverse events
and lower than 0.5 (i.e., transtensional) in the regions of normal-
faulting events (Fig. 8). The R values are 0.3–0.7 for the regions where
strike–slip events are dominant. The plunges of s1 are generally
less than ∼20◦ in most regions, suggesting the maximum horizon-
tal stress component, sH. This observation suggests that the regional
stress field is predominantly induced by the tectonic loading asso-
ciated with the plate tectonics. The orientations of the maximum
horizontal stress components change gradually with the distances
from the plate boundaries (Fig. 9 (a)). The horizontal compressional
stress field is calculated by interpolating the observed s1 directions
(Fig. 9 (b)).

The sH is oriented EW to ENE around the Korean Peninsula
and normal to the trench axis around the subduction zones off the
Japanese islands. It is noteworthy that the sH orientations around
the subduction zones re generally subparallel with the plate con-
vergence directions. The observation suggests that the stress field
is controlled by the relative plate motions. The orientations of sH

gradually change with the distance from the trench-axis toward the
intraplate regime. The orientations of sH change rapidly in the East
Sea, presenting high lateral variations in the stress field. The rare
seismicity in the crust of East Sea may be ascribed to the high vari-
ation of sH orientations. The rapid lateral variation of stress field
around the Korean Peninsula and Japanese islands may be associ-
ated with the relative influence of convergent plate motions. The
eastern margin of the Eurasian plate around the Korean Peninsula
and Japanese islands is encompassed by the Okhotsk plate, Pacific
plate, and Philippine Sea plate. The plate convergence environment
constitutes a compressive stress regime around the eastern Eurasian
plate. The influence of each convergent plate may be dependent
on the distance and convergent speed. The sH orientations around
the Japanese islands agree with other studies (e.g., Zoback, 1992;
Townend and Zoback, 2006; Heidbach et al., 2010; Yokota et al.,
2015).

The influence of a megathrust earthquake on the regional stress
field is investigated. We compare the inverted stress field before and
after the 11 March 2011 M9.0 Tohoku-Oki earthquake. The stress
field before the megathrust earthquake is inverted using the data

(a) (b) (c)

Fig. 6. Standard errors of the stress-component orientations from a bootstrap analysis of the stress field inversions. The standard errors of s1 are small in most regions. The
standard errors of s2 are small around the Japanese islands, and those of s3 are small in most regions except the northern Japanese islands.
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(a) (b)

Fig. 7. Inverted s1 orientations around the Japanese islands: results based on (a) 2◦-by-2◦ spatial bins and (b) 1◦-by-1◦ spatial bins. The inverted s1 orientations are similar for
the two spatial-bin systems.

Fig. 8. Distribution of the stress ratios (R). The stress ratios are 0.3–0.6 around the
Korean Peninsula and vary widely around the Japanese islands.

sets for five years from 11 March 2006 to 10 March 2011. More-
over, the postseismic stress fields are calculated using the data sets
for two years from 11 March 2011 to 10 March 2013 and those for
three years from 11 March 2013 to 10 March 2016 (Fig. 10). The
stress field was perturbed locally after the megathrust in some loca-
tions. We find that the perturbed regional stress field was recovered
within two years after the megathrust. This observation suggests
that the regional stress field perturbed by a megathrust is recovered

with time. In addition, the stress field recovery allows us to esti-
mate the regional stress field with data sets over entire time periods
reasonably.

7. Vertical variation in the stress field around the Japanese
islands

The crustal stress field induced by tectonic loading may be
generally invariant with the depth in regions away from the plate
boundaries. Crustal and tectonic structures may cause a local vari-
ation in the stress field (e.g., Homberg et al., 1997; Kattenhorn
and Marshall, 2006). The stress perturbation induces earthquakes
in different faulting types in small regions, which is obvious in the
subduction zones (Fig. 11). However, earthquakes in common fault-
ing types appear to be clustered locally (Fig. 11). Such coexistence
of earthquakes in different faulting types is found in other conver-
gent plate boundaries including the northern Chilean fore arc and
India–Eurasia plate boundary (e.g., Loveless et al., 2010; Karagianni
et al., 2015).

The coexistence of earthquakes in different faulting types
may be associated with a local stress perturbation by the locking
of subducting slabs, slab-surface branching, elastic rebound, and
laterally inhomogeneous buoyancy forces (Savage, 1983; Bohnhoff et
al., 2006; Toda and Matsumura, 2006; Loveless et al., 2010; Kita et al.,
2010; Lin et al., 2016). A vertical stress perturbation is also observed
in volcanic regions (e.g., D’Auria and Massa, 2015).

The s1 orientations are invariant with the depth in the inland
Japanese islands. On the other hand, the s1 orientations distinctively

(o)σσ
(a) (b)

Fig. 9. (a) Orientations of the largest horizontal stress components (s1) at discrete spatial bins and (b) the interpolated s1 field. The s1 field is oriented EW to ENE around the
Korean Peninsula and trench-normal around the subduction zones off the Japanese islands.
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Fig. 10. Comparison of the regional stress fields (s1) before and after the 11 March
2011 M9.0 Tohoku-Oki earthquake. The regional stress field was perturbed temporally
after the megathrust. The stress field was recovered two years after the megathrust.

change vertically in the offshore regions around the subduction
zones (Fig. 12 (a)). The s1 orientations at depths less than 10 km are
generally subparallel with the plate convergence directions. The s1

orientations appear to rotate clockwise with increasing depth. Sim-
ilarly, the s2 orientations at shallow depths (<10 km) around the
trenches are subparallel with the trench axes and the fast shear-
wave polarization orientations (Okada et al., 1995; Nakajima and
Hasegawa, 2004; Long and van der Hilst, 2005). However, the s2

orientations appear to rotate anticlockwise with increasing depth,
unlike the s1 orientations (Fig. 12 (b)).

The stress components around the subduction zones do not
change only in horizontal orientations but also in vertical orienta-
tions (Fig. 13). The largest primary stress component s1 displays a
vertical variation in the plunges around the subduction zones. The

vertical variation in the s1 plunges appears to change with the dis-
tance from the trenches. However, the plunges of s1 are invariant
with the depth in the inland Japanese islands.

It is noteworthy that the vertical variation in the stress field
in subduction zones is generally consistent with in-situ measure-
ments (Tobin et al., 2009; Chang et al., 2010; Song et al., 2011 Wu
et al., 2012 Lewis et al., 2013; Lin et al., 2016). The vertical varia-
tion in the stress field suggests an effective local stress perturbation
by slab subduction and lithospheric deformation. In particular, the
stress field is highly affected by the geometry of crustal or tectonic
structures in a low-friction environment with a high fluid pres-
sure (Balfour et al., 2005), which may be effective in subduction
zones.

8. Discussion and conclusions

We investigated the regional stress field in the continental mar-
gin around the Korean Peninsula and Japanese islands from the
focal mechanism solutions of regional earthquakes. We identified
the stress regime from the composition of the stress components.
Different fault types of earthquakes occur in the same regions par-
ticularly around subduction zones, which may be difficult to expect
under a constant stress field. The contemporary existence of differ-
ent combinations of stress components may be associated with local
medium deformation and stress perturbation by existing crustal
structures.

The plunge distribution of the inverted stress components sug-
gested that the largest primary stress component (s1) corresponded
to the largest horizontal stress component (sH). The other stress
components (s2,s3) corresponded to the lowest horizontal stress
component (sh) or vertical stress component (sV) depending on the
location. The sH orientations were consistent with the plate con-
vergence directions around the subduction zones off the Japanese
islands. The orientations of sH in the Japanese islands gradually
changed with the distance from the trenches. The orientations of
sH changed rapidly in the East Sea and were directed EW to ENE
around the Korean Peninsula. The horizontal compression stress
fields around the Korean Peninsula and inland Japanese islands may
be a consequence of the combined effects of tectonic loading in

(a) (b)

Fig. 11. Lateral and vertical distributions of events for regions (a) A and (b) B.
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(a) (b)

Fig. 12. Vertical variations in the stress-component orientations (a) s1 and (b) s2. The orientations of the stress components are invariant with the depth in the inland regions.
The stress-component orientations change with the depth around the subduction zones off the Japanese islands.

the subduction zones off the Japanese islands (Japan trench, Nankai
trough) and the India–Eurasia plate boundary.

The s1 orientations were invariant with the depth in the crusts
around the Korean Peninsula and inland Japanese islands. The s1 ori-
entations displayed a characteristic clockwise rotation with depth
around the subduction zones. On the other hand, the s2 orientations
presented an anticlockwise rotation with the depth. The rotations of
the horizontal stress components may be a consequence of a local
stress perturbation by slab subduction and lithospheric deformation.

The depth-dependent stress field and the complex mixture of
earthquakes in different faulting types suggest that local crustal
structures and tectonic processes play important roles in the con-
struction of a stress field in the subduction zones. Moreover, the
stress field and tectonic structures mutually affect each other, causing
a stress field distortion that induces earthquakes in different faulting
types in small regions. A megathrust earthquake may perturb the
regional stress field temporally, incorporating temporal changes in
the seismicity properties. Comprehension of the local stress may be

Fig. 13. Vertical distribution of s1 plunges around the Japanese islands. The s1

plunges are invariant with the depth in the inland regions and change with the depth
around the subduction zones.

useful for understanding the potential seismic hazards in continental
margins. Moreover, a megathrust earthquake may cause a temporal
perturbation in a regional stress field, subsequently incorporating a
change in the seismicity property (e.g., Hong et al., 2015).
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