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Abstract The 2011 Mw 9.0 Tohoku-Oki megathrust earthquake accompanied coseismic and postseismic
displacements around the eastern Eurasian continental plate. Noise cross correlations produced transient
seismic waveforms along interstation paths in the Korean Peninsula. We measured the traveltime changes
of the fundamental mode Rayleigh waves over the range of 0.03–0.08 Hz after the megathrust earthquake.
The temporal seismic velocity changes in the lower crust were assessed from the traveltime changes. The
traveltimes increased instantly after the megathrust earthquake and were gradually recovered over several
hundreds to thousands of days. The instant shear wave velocity decreases ranged between 0.731 (±0.057)%
and 4.068 (±0.173)%. The temporal medium perturbation might be caused by the transient uniaxial
tensional stress due to the coseismic and postseismic displacements. The medium properties may be
recovered by progressive stress field reconstruction.

1. Introduction

The seismic velocity is sensitive to medium perturbations, which is particularly evident in environments under
low effective pressures (Brenguier et al., 2014; Shapiro, 2003; Zinszner et al., 1997). Megathrust earthquakes
produce strong seismic waves and coseismic and postseismic displacements over local and regional distances.
Strong seismic waves and coseismic crustal deformation incurred seismic velocity reductions ranging from
0.08 to 50% in the near surface and shallow crust over local or near-regional distances (Brenguier et al., 2014;
Chaves & Schwartz, 2016; Minato et al., 2012; Nakahara, 2015; Nakata & Snieder, 2011; Taira et al., 2015; Xu
& Song, 2009). Laboratory experiments reported that seismic velocities can decrease by 12–30% in gran-
ite under confining pressure (Hamiel et al., 2009; Lockner et al., 1977; Masuda et al., 1987; Stanchits et al.,
2006). It was suggested that the velocity changes were caused by medium damage due to strong ground
motions (Chaves & Schwartz, 2016). However, the influence of coseismic and postseismic displacements on
the regional lithosphere remains veiled.

The March 11, 2011 Mw 9.0 Tohoku-Oki megathrust earthquake occurred on the convergent plate bound-
ary between the Pacific plate and the Okhotsk plate. The megathrust earthquake produced a 440 km by
180 km rupture plane with a peak coseismic slip of ∼50 m (Yagi & Fukahata, 2011) (Figure 1a). The peak
ground accelerations from the seismic waves reached 20–30 m/s2 on the Japanese islands and ∼1.5 cm/s2

on the Korean Peninsula (Furumura et al., 2011; Houng et al., 2016; Tajima et al., 2013; Wu & Peng, 2011). The
strong seismic waves triggered earthquakes worldwide (e.g., Houng et al., 2016; Gonzalez-Huizar et al., 2012;
Miyazawa, 2011).

The peak lateral coseismic displacements reached ∼4.3 m in Northern Honshu and 2–5 cm on the Korean
Peninsula (Baek et al., 2012; Hong et al., 2015; Simons et al., 2011). Postseismic displacements continued
following the coseismic displacements (Kim et al., 2016; Sun et al., 2014; Tobita, 2016). These cumulative post-
seismic displacements after the megathrust earthquake were comparable to the coseismic displacements
in the Korean Peninsula. The distance-dependent discriminative displacements produced a transient uniax-
ial tensional stress field over the eastern Eurasian plate around the Korean Peninsula (Hong et al., 2015). We
investigate the medium perturbation and its recovery in a continental intraplate region from the analysis of
the seismic velocity changes.
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Figure 1. The 2011 Mw 9.0 Tohoku-Oki earthquake and its effects. (a) Lateral coseismic displacements (contours with solid lines) (Hong et al., 2015) and
postseismic displacements over 3 years (arrows) (Kim et al., 2016) around the Korean Peninsula. A coseismic slip model is presented (Yagi & Fukahata, 2011). The
coseismic and postseismic displacements are subparallel with the great-circle directions to the epicenter. (b) Comparison of focal depth distribution before and
after the megathrust earthquake. The fraction of deeper earthquakes increased for 3 years after the megathrust earthquake. (c) The postseismic displacement
rates from the geodetically measured postseismic displacements (Kim et al., 2016) decrease with time, reaching less than ∼ 1 × 10−5 m/d in ∼900 days after the
megathrust earthquake.

2. Data and Megathrust Earthquake Effects

The Korean Peninsula is located near the eastern margin of the Eurasian plate, ∼1,200 to ∼1,500 km away
from the epicenter of the megathrust earthquake. The eastern Eurasian plate is surrounded by the Okhotsk,
Pacific, and Philippine Sea plates (Figure 1a). The compressional stress induced from the convergent plate
boundaries is transmitted to adjacent continental regions. The lithosphere of the Korean Peninsula consists
of three Precambrian massif blocks and two intervening fold belts, which together form a stable intraplate
environment. The plate disposition and intraplate environment make the Korean Peninsula a unique place for
investigations of transient lithospheric deformation after a megathrust earthquake.

The Tohoku-Oki megathrust earthquake produced coseismic displacements of 2–5 cm over the Korean
Peninsula (contours with solid lines in Figure 1a). The coseismic displacements constructed an epicenter-
directing tension field over the peninsula (Hong et al., 2015). Postseismic displacements in the same direc-
tions followed the coseismic displacements (solid arrows in Figure 1a). The postseismic displacements at
shorter distances from the epicenter were generally larger than those at longer distances. The seismicity for
earthquakes with magnitudes greater than the minimum magnitude (Mmin = 2.5) ensuring complete records
increased after the megathrust earthquake (Hong et al., 2015; Kim et al., 2016). In addition, moderate size
earthquakes increased after the megathrust earthquake (Hong et al., 2015, 2017). The seismicity in the mid-
crust at depths greater than 12 km increased after the megathrust earthquake, suggesting a change in the
crustal stress field (Figure 1b).

The postseismic displacements decreased with time, lasting more than∼1,000 days (Kim et al., 2016) and pro-
ducing negative gradients in time. The postseismic displacements at shorter distances were larger than those
at longer distances (Figure 1c). These discriminative coseismic and postseismic displacements that depend
on the distance to the megathrust earthquake induce a tension field in the lithosphere and the stress changes
perturb the media in the crust. The increases of seismicity and focal depths in the Korean Peninsula may
be associated with the decrease of yield strength by the transient tension stress (Hong et al., 2015; Watts &
Burov, 2003).

HONG ET AL. TRANSIENT SEISMIC VELOCITY CHANGES 10,998
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Figure 2. Estimation of transient seismic traveltime changes after the megathrust earthquake. (a) Reference and daily noise cross-correlation functions from
ambient noise analysis, and measurement of traveltime difference using a waveform cross correlation. Noise cross-correlation functions are well retrieved. (b)
Transient seismic velocity changes along some interstation paths. Instant seismic velocity decreases are observed after the megathrust earthquake (inserted
figures). Parameter 𝜖 presents the minus of the relative velocity change. The observed seismic velocity changes are fitted by exponential functions (thick solid
lines in the inserted figures). The average velocity changes over discrete time bins (blue lines) agree well with the reference exponential curves. The great-circle
paths from the stations to the megathrust earthquake are presented (thin solid lines on the map).

We collected continuous seismic noise records from 20 homogeneously distributed broadband seismic sta-
tions around the Korean Peninsula from 1 September 2010 to 31 August 2014. The sampling rate of the records
was 100 Hz. The interstation distances varied between 47.8 and 604.4 km. The average interstation distance
was 272.4 km.

3. Methods

We prepared one-bit normalized seismic records of ambient noises and calculated the noise cross-correlation
function for every single day for every pair of stations on the Korean Peninsula (Bensen et al., 2007; Campillo &
Paul, 2003; Shapiro et al., 2005) (Figure 2). The low seismicity in the Korean Peninsula enabled us to compute
stable daily noise cross-correlation functions (Figure 2). The reference noise cross-correlation function was
computed from noise records for 5 months from 1 September 2010 to 28 February 2011, which represented
the period before the megathrust earthquake.

We estimated the traveltime differences between the reference and daily noise cross-correlation functions
using a waveform cross correlation. We selected the fundamental mode Rayleigh waveforms from the noise
cross-correlation functions in lapsed time ranging between l∕vg−10 and l∕vg+4.5∕fc s, where l is the epicentral
distance and vg is the group velocity of the fundamental model Rayleigh waves for the central frequency fc.
The fundamental mode Rayleigh waves with correlation coefficients greater than 0.8 were analyzed.

The stretch parameter 𝜖 was calculated from the relative time shift between the reference and daily noise
cross-correlation functions, which was converted to the relative velocity change (Brenguier et al., 2008; Minato
et al., 2012):

𝜖 = Δt
t0

≈ −
v1 − v0

v0
, (1)
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where Δt is the traveltime difference between the reference and transient traveltimes, v0 is the reference
seismic velocity in km/s, v1 is the transient seismic velocity in km/s, and t0 is the reference traveltime
in seconds.

Rocks are deformed by applied stresses, accompanying seismic velocity change (Brantut et al., 2014; Schubnel
et al., 2005). The recovery rates of the physical properties of elastic media are high shortly after the termination
of the applied stress. The recovery rates decrease quickly with time (Brantut et al., 2014), while the seismic
velocity changes with the recovery of the medium properties (Brenguier et al., 2008). The seismic velocities
recover exponentially with time for release of effective stress (Brantut, 2015; Schubnel et al., 2005). Therefore,
the temporal evolution of seismic velocity changes, 𝜖, may be represented by an exponential function:

𝜖 = a exp(−by), (2)

where the constant a corresponds to the instant seismic velocity change, the constant b is the seismic veloc-
ity recovery rate factor, and y is the lapsed time in days. The constants a and b are determined for every
interstation path using a nonlinear least-squares algorithm.

4. Noise Cross-Correlation Function

We analyzed the noise cross-correlation functions for a frequency band of 0.03–0.08 Hz, which was effective
for a stable analysis (Xu & Song, 2009). The sensitivity kernel of the Rayleigh waves based on a one-dimensional
earth model (Dziewonski & AndersonSayers, 1981) suggested that the noise cross-correlation function
reflected the medium properties of the lithosphere (∼9–84 km) (see supporting information). The wavelength
for the central frequency was 67 km, which was about one fourth the average interstation distance. A detailed
discussion on the analysis can be found in the supporting information (Bensen et al., 2007; Campillo & Paul,
2003; Shapiro et al., 2005; Yao et al., 2006).

We calculated the noise cross-correlation functions for the reference 5 month record sections and daily record
sections (Figure 2a). The daily noise cross-correlation functions produced well-established fundamental mode
Rayleigh waves. We found high correlations (correlation coefficients greater than 0.8) between the refer-
ence and daily waveform record sections in the interstation paths around the great-circle directions to the
earthquake epicenter (Figure 2b; see supporting information).

It is noteworthy that the waveform correlations in the interstation paths around the great-circle directions to
the earthquake epicenter temporally decreased right after the megathrust earthquake for several days (see
supporting information). Also, the waveform correlations were low in the paths with deviation angles greater
than about 12∘ from the great-circle directions to the earthquake epicenter (see supporting information).

The positive (causal) and negative (anticausal) portions of the noise cross-correlation functions were gener-
ally symmetric (see supporting information). We chose a pair of noise cross-correlation functions with large
amplitudes and similarity and measured the traveltime differences of the fundamental mode Rayleigh waves.

5. Transient Seismic Velocity Changes

The daily fluctuations of the velocity changes before the megathrust earthquake suggested the possible error
level in the velocity change estimates. The standard deviations of the daily fluctuations were generally less
than 1% on most paths, which is compared to other studies (e.g., Minato et al., 2012) (Figure 2; support-
ing information). In addition, the velocity changes displayed the present characteristic periodic fluctuations
with periods of 28.44 and 75.85 days, which could be partly associated with the solid-earth and ocean tides.
The periodic fluctuations in velocity changes could reach to around 1% (supporting information). The ref-
erence noise cross-correlation functions based on 5 months records may be hardly affected by the periodic
fluctuations considering the dominant frequencies.

Abrupt traveltime changes were observed after the megathrust earthquake. The traveltime differences
reduced with the lapsed time after the megathrust earthquake. The seismic velocity changes were calculated
from the traveltime changes from equation (1). We fitted the temporal seismic velocity changes with expo-
nential curves. The coefficients (a, b) of the exponential curves were determined for every interstation path.

The seismic velocity changes display consistent variations that were represented well by the exponential
curves (Figure 2b). We found that the instant seismic velocity decreased by 0.731 (±0.057) to 4.068 (±0.173)%
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Figure 3. (a) Spatial distribution of instant seismic velocity changes a and recovery rate factors b and (b) variation of a and b with azimuth from the great-circle
directions to the megathrust earthquake. The seismic velocity changes are observed on the paths around the great-circle directions (<12∘ from the
great-circle directions). The recovery rates of the seismic velocities vary by path.

after the megathrust around the great-circle directions (Figure 3; see supporting information). The recovery
rates (b) were positive, ranging between 0.0013 (±0.0001) and 0.0157 (±0.0032). The observation suggested
that seismic velocities restore over time. The observed instant seismic velocity changes on some paths were
much stronger than the typical levels of daily fluctuations and possible artifacts (e.g., Zhan et al., 2013). Similar
velocity changes are observed in different frequencies (see supporting information).

It takes several hundreds to thousands of days to have the seismic velocity changes return to less than 0.1%
according to the determined reference curves (see supporting information). The seismic velocity changes sug-
gest that the stress field in the regional crust was perturbed by the coseismic and postseismic displacements,
causing changes in medium properties. The seismicity increase in the Korean Peninsula since the megath-
rust earthquake supports the stress field change in the crust (Hong et al., 2015, 2017). The long-term ambient
stress field perturbation in the crust may be highly affected by the static stress changes by coseismic and
postseismic displacements. In contrast, the dynamic stress changes by strong seismic waves affect the tran-
sient property changes near the surface and may be less effective in the middle and deep crust due to the
high-pressure confining environment (e.g., Nakata & Snieder, 2011).

6. Discussion and Conclusions

The 2011 M9.0 Tohoku-Oki megathrust earthquake accompanied large coseismic and postseismic litho-
spheric displacements. The stress field in the crust was perturbed by the coseismic and postseismic dis-
placements, and the seismicity around the Korean Peninsula was increased after the megathrust earthquake
(Figure 1b) (Hong et al., 2015, 2017).

We observed instant seismic velocity changes in the crust following the coseismic lithospheric displace-
ments by the megathrust earthquake. The instant seismic velocity changes suggested a rapid response of the
medium to the coseismic displacements that produced a point-directing (radio-symmetrical) tension stress
field over the backarc region (Figure 4a). The seismic velocity changes generally followed an inverse of an
exponential decay function with time, suggesting fast recovery of the seismic velocities shortly after the earth-
quake and slow recovery after some time had passed. The recovery of seismic velocities could suggest the
restoration of the stress field in the crust.

The epicenter-directing lithospheric displacements were naturally subparallel with the great-circle directions
to the epicenter. The point-directed extensional displacements accompanied contracting deformations in the
normal directions, producing azimuth-dependent medium perturbations. The fundamental mode Rayleigh
waves on the paths around the great-circle directions to the epicenter displayed high correlations in wave-
forms with traveltime differences before and after the megathrust (Figure 4b). The observed velocity changes
were gradually recovered for several hundreds to thousands of days, which is longer than those observed in
smaller events (Chaves & Schwartz, 2016; Taira et al., 2015).

HONG ET AL. TRANSIENT SEISMIC VELOCITY CHANGES 11,001
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Figure 4. Induced tension field and traveltime changes after the megathrust earthquake. (a) Induced tension field by
epicenter-directing lithospheric displacements. An epicenter-directing tension field is constructed effectively over
regional distances. The induced tension stress decreases with distance. (b) Waveform correlations and traveltime
difference measurement. High correlations are observed on the paths around the great-circle directions. The waveform
correlations decrease on the paths off the great-circle directions due to preferential epicenter-directing medium
perturbation.

In contrast, the Rayleigh waves on the paths out of the great-circle directions presented low correlations
with waveforms (see supporting information). The observations suggested that the seismic waves experi-
enced inphase traveltime changes along the great-circle directions due to the epicenter-directing lithospheric
extension. However, the medium perturbation induced phase changes in the waveforms off the great-circle
directions, lowering the waveform correlations. Also, we observed temporal decreases in waveform corre-
lations even in the paths around the great-circle directions to the epicenter for several days right after the
megathrust earthquake (see supporting information), which may be due to dynamic crustal deformation and
viscoelastic relaxation. These features may cause difficulty in analysis of velocity changes.

The seismic velocity changes over the whole crust may be a consequence of perturbation in the static
stress field and medium properties during the coseismic and postseismic lithospheric displacements. The
azimuth-dependent waveform correlations suggest that epicenter-directing lithospheric displacements per-
turb the medium to be preferentially aligned along the induced tension axes (Hoek & Bieniawski, 1965;
Lyakhovsky et al., 1997; Shimizu, 1984). It is noteworthy that the seismic velocities recover continuously during
the postseismic displacements. This may be because the extensional stress (force) in the medium decreases
with time due to the decreasing postseismic displacements. In addition, the static stress field can be recovered
by tectonic loading during the decreasing postseismic displacements.

The medium perturbation by the megathrust earthquake appears to be particularly effective in the regional
backarc region. However, the coseismic and postseismic displacements in near distances from the megathrust
earthquakes cannot be simplified to be point-directing displacements as shown over regional distances. The
coseismic and postseismic displacements by a megathrust earthquake with a large rupture plane may pro-
duce complicated medium deformation over near distances, which may not display obvious seismic velocity
changes.
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