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media and its implication to sounding of heterogeneity in the Earth’s
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S U M M A R Y
The scattering features of elastic waves in media with geometrically anisotropic heterogeneities
are investigated in terms of scattering attenuation, coda level and scattering directivity. The
theoretical variation of scattering attenuation with normalized wavenumber (ka) is formu-
lated using the multiple forward scattering and single backscattering approximation. Estimates
obtained from numerical simulations agree with the theoretical predictions well. The level
of scattering is influenced by the anisotropy (aspect ratio, direction) and the wave incidence
direction. The scattering level is not sensitive to the scale variation in the wave incidence direc-
tion, but is highly sensitive to the scale variation in the tangential direction. Forward scattering
is dominant when waves are incident along the major direction of geometrically anisotropic
heterogeneity, and backward scattering is dominant when the waves are incident in the minor
direction. The scattered energy is not distributed isotropically in media with anisotropic het-
erogeneity, and the level of early coda varies with the wave incidence angle. The late coda is
composed of multiscattered and multipathing waves, and displays a stochastically stable en-
ergy level. The incidence angle of waves is a key parameter in the early coda variation, and an
approach with classified seismic data for incidence angle is desired in the study of anisotropic
heterogeneity in Earth’s deep interior from seismic coda and precursor.

Key words: attenuation, elastic waves, geometrical anisotropy, minimum scattering angle,
numerical modelling, scattering, theory, wavelet-based method, wavelets.

1 I N T RO D U C T I O N

Rigorous efforts have been made to investigate heterogeneities in
the Earth’s deep interior (e.g. Hedlin et al. 1997; Kennett et al.
1998). The sounding of the Earth’s deep interior using traveltime
information or waveform inversion is useful with low-frequency
seismic waves, which reflect large- (or global-) scale variation. On
the other hand, probing with scattered waves, which appear in a form
of precursors or coda waves in seismograms, allows us to investigate
small-scale heterogeneity in the Earth. The inversion of scattered
waves has been based on a stochastic approach assuming uniformly
distributed isotropic heterogeneity (e.g. Hedlin et al. 1997; Lee et al.
2003).

The stochastic representation approach, however, suffers from
non-uniqueness as usual inversion techniques do. In an analysis
of seismic precursor of PKP, Hedlin et al. (1997) and Cormier
(1999) presented a small-scale heterogeneity distribution model
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of the lower mantle, where isotropic random heterogeneities with
scale of 8 km and velocity perturbation of 1 per cent are dis-
tributed uniformly up to 1000 km above the core–mantle boundary
(CMB). Another heterogeneity model compatible to the observed
scattering strength is a model with strongly perturbed narrow zones
at the lowermost mantle (Hedlin et al. 1997). Later, Margerin &
Nolet (2003) confirmed the former model by an envelope inversion
technique based on a radiative transport theory, which is formu-
lated with an idea that the total transported scattered energy can
be computed by radiated energy intensity including multiscattered
energy.

The stochastic representation based on isotropic random het-
erogeneities, thus, provides us a fairly good insight on the phys-
ical and chemical environment in the Earth’s deep interior de-
spite the non-unique determination (e.g. Vidale & Hedlin 1998;
Vidale & Earle 2000). However, geometrically anisotropic het-
erogeneities in the Earth are reported from seismic tomography
studies (e.g. Kennett et al. 1998; Romanowicz 2003). Thus, it
may be more reasonable to consider anisometric heterogeneity
for the description of heterogeneity in the Earth. However, the
scattering features by anisometric heterogeneities are known very
little.
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Figure 1. Synthetic P-wave record sections from geometrical anisotropic
random media at various incidence angles (ϕ i = 0, 30, 45, 60, 90◦). The ani-
sometric heterogeneity is horizontally elongated, and the scales are 4010 m
in the horizontal direction and 501 m in the vertical direction. The propa-
gation distance is 49.1 km. The other physical properties of the medium are
described in Section 5. The waveforms in both primary and coda change
drastically with the incidence angle.

The scattering attenuation in anisometric random medium has
been investigated in a limited view previously, for instance, paraxial
wave incidence on anisometric heterogeneous medium (Wagner &
Langston 1992; Roth & Korn 1993). Recently, traveltime variation
(Samuelides & Mukerji 1998; Iooss et al. 2000; Kravtsov et al.
2003) and amplitude fluctuation (Müller & Shapiro 2003) in aniso-
metric random media were investigated in terms of incidence angle.
However, the influence of the incidence angle on scattering atten-
uation remains still unclear, and the way to investigate anisometric
heterogeneities has been rarely discussed.

In scattering by anisometric heterogeneity, the incidence angle
to the heterogeneity looks an important factor. Because appar-
ent scale of heterogeneity varies with the incidence direction. In
Fig. 1, synthetic record sections from anisometric random media
are presented. The waveforms in both primary and coda change
drastically with the incidence angle. Thus, the investigation of
scattering features for change of incidence angle will help us to
understand more clearly the physical composition in the Earth’s
interior. In particular, the core phases, PKP, display a specific
incidence angle to the CMB with epicentral distance; for in-
stance, PKPdf (PKIKP) shows a nearly vertical incidence to the
CMB at distances around 180◦, and the incidence angle of the
PKPbc branch varies from about 30◦ to 60◦ at distances around
140◦.

In this study, we mainly focus on the investigation of scat-
tering attenuation variation, coda and scattered energy transmis-
sion in anisometric random media. For this purpose, we formu-
late a theoretical scattering attenuation expression for anisomet-
ric media. The theoretical expression is compared with the esti-
mates from numerical simulations. Various sets of physical pa-
rameters are considered for models, and the influence of each
parameter on scattering is investigated. In particular, the influ-
ence of incidence angle on the scattering energy distribution and
coda level is discussed. Also, the difference in scattering be-
tween anisometric and isotropic random media is examined. Fi-
nally, we discuss the way to estimate correctly the physical property
of anisometric heterogeneity in the Earth from observed seismic
data.

2 T H E O R E T I C A L E X P R E S S I O N O F
S C AT T E R I N G AT T E N UAT I O N I N
A N I S O M E T R I C R A N D O M M E D I A

Theoretical scattering attenuation expression for anisometric ran-
dom media can be formulated by expanding the approach for
isotropic random media (Hong & Kennett 2003a; Hong 2004). Note
that Wu & Aki (1985b) derived a general formulation of scattering
coefficients, which can be applied to both isotropic and anisometric
random media.

Here we consider the scattering of 2-D elastic waves. The 2-D
elastic wave equations are given by
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and λ0 and µ0 are the Lamé coefficients, and ρ 0 is the density in
the background medium.

The perturbations in physical parameters (ρ = ρ 0 + δρ, λ =
λ0 + δλ, µ = µ0 + δµ) cause wave scattering, and can be treated
as equivalent body forces ( f s

x , f s
z ) for the scattered field:
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For vertically incident P waves (u0
x = 0, us

z = exp[i(kαz − ωt)]), eq.
(4) can be written by (Hong & Kennett 2003a)
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Here, the variations of physical parameters in the Earth are strongly
correlated to each other (Birch 1961; Shiomi et al. 1997; Romanow-
icz 2001), so the S-wave velocity perturbation and the density pertur-
bation can be expressed in terms of the P-wave velocity perturbation
(ξ ):

ξ (x, z) = ∂α

α0
= 1
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= 1

Kρ

δρ
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, (6)

where α0 is the P-wave velocity in the background medium, β 0

the S-wave velocity, and ρ 0 the density. K β and K ρ are constants
determining the relative strengths of S-velocity perturbation and
density perturbation to the P-velocity perturbation.

Using the relationship in (6), the body forces in (5) can be ex-
pressed in terms of ξ :
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where C 1 and C 2 are

C1 = (2 + Kρ) − 2

γ 2
(2Kβ + Kρ), C2 = 2Kβ + Kρ (8)
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and γ = α0/β 0. The remaining derivation procedure follows the
procedure in previous studies. A summarized derivation procedure
of scattering attenuation is presented in Appendix A.

Finally, the theoretical scattering attenuation expression
(Q−1/ε2), based on the multiple forward scattering and single
backscattering approximation, is given by

Q−1
s

ε2
= k2

αWr

(4π )2
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αγ

2Wt

(4π )2

∫ 2π−θmin−�φ

θmin+�φ

P
(
k∗

t

)
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where θ min is the minimum scattering angle, ε is the standard devi-
ation of perturbation, P is the power spectral density function, and
�φ is given by

�φ = φP − φS, φP = π − θmin

2
, φS = sin−1

(
sin φP

γ

)
. (10)

The wavenumber vector k∗
j ( j = r , t) is given by

k∗
r = kα(1 − cos θ, − sin θ ), k∗

t = kα(1 − γ cos θ, −γ sin θ ),
(11)

and the coefficient Wj is
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/32,
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2

)
/32. (12)

Here, the coefficient Wj reflects the average coefficient strength for
every scattering angle. The eq. (9) is the general scattering attenu-
ation solution for anisometric random medium, and can be applied
directly if the PSDF is known. The PSDF for paraxial incidence sys-
tem can be formulated easily, but the PSDF for inclined incidence
system needs to be formulated with consideration of incidence an-
gle. The discussion is expanded in Section 4.

3 A N I S O M E T R I C R A N D O M M E D I A

We follow the notation and the terminology used in the geostatis-
tics (Deutsch & Journel 1998) for description of geometrically
anisotropic model. The direction of the largest correlation distance
is called the major direction, and the tangential direction, with the
smallest correlation distance, is referred as the minor direction. The
heterogeneity scales in the major and minor directions are used for
the construction of anisometric structure.

We first consider paraxial systems where the major direction is
along either of the coordinate axes. The anisometric random het-
erogeneity can be modelled by extending the isotropic heterogene-
ity expression. The 2-D exponential autocorrelation function (ACF,
N (x)) of anisometric random heterogeneity and its power spectral
density function (PSDF,P(k)) are given by (e.g. Iooss 1998)

N (x, z) = exp
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]
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}3/2 , (13)

where ax and a z are the correlation distances (scales) of stochastic
random heterogeneity in x- and z-axis directions, and kx and k z are
the wavenumbers along the axis directions. The r′/a′, k′ a′, and Va

in (13) are given by
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The ACF and PSDF of Gaussian random medium are
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and the von Karman ACF and PSDF are
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,
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where ν is the Hurst number, � is the Gamma function, and K ν

is the modified Bessel function of order of ν. Here the exponential
random media correspond to von Karman media with Hurst number
of 0.5.

4 E X PA N S I O N T O I N C L I N E D
A N I S O M E T R I C R A N D O M M E D I A

In anisometric random media, the stochastic heterogeneity scales
in the incident and tangential directions change with the wave inci-
dence angle. Thus, it is expected that the scattering strength changes
with the incidence angle. This effect is observed in a form of az-
imuthal anisotropy in field data analysis. As the wave front approach-
ing to the deep Earth is nearly planar, the incident waves are well
defined with the incidence angle and the geometry of the anisomet-
ric system can be represented with the relative incidence angle for
the anisometric heterogeneity.

For convenience in numerical simulation and analysis, the in-
cidence angle is considered in the system by rotating the ran-
dom medium instead of considering inclined wave incidence (see,
Fig. 2a). The implementation of rotated anisometric medium pro-
vides several advantages over the consideration of inclined wave
incidence. With application of periodic boundary condition at the
left and right artificial boundaries of medium, we can imitate a hor-
izontally unbounded random medium. Also, the scattered energy
exchanged across the artificial boundaries can be considered cor-
rectly. Note that the incidence angle considered in this study is the
relative angle between the wave incidence direction and the minor
direction of heterogeneity. Thus, the results can be extended straight-
forwardly to field observation by considering the relative incidence
angle.

We have presented the theoretical scattering attenuation expres-
sion for paraxial system in (9), where waves are incident along
the major or minor direction. The scattering attenuation in a ran-
dom medium is the stochastic energy loss by scattering on hetero-
geneities. The individual ray is interfered by perturbation along the
ray path, and the scattering of incident waves is dominantly influ-
enced by the apparent scales of heterogeneity in the incident and the
tangential direction. Thus, the heterogeneity in inclined incidence
system can be represented with stochastic scales in the incident and
tangential directions.

The stochastic scales of inclined heterogeneity can be esti-
mated through an angular rotation of the coordinate system (e.g.
Samuelides & Mukerji 1998; Iooss et al. 2000):

1

ah
=

√
cos2 ϕi

a2
x

+ sin2 ϕi

a2
z

,
1

av

=
√

sin2 ϕi

a2
x

+ cos2 ϕi

a2
z

, (17)

where ϕ i is the relative incidence angle and av is the stochastic
scale in the wave incidence direction and ah is the scale in the tan-
gential direction. The theoretical variation of scattering attenuation
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Figure 2. (a) The relative incidence angle (ϕ i ) is defined as the angle between the incidence direction (z) and the minimum direction of anisotropy (z′). x ′-axis
direction corresponds to the maximum direction of anisotropy, and x-axis direction is orthogonal to the incidence direction. (b) The geometrical anisotropic
random medium with ax = 4010 m, a z = 501 m and ϕ i = 30◦.

in inclined system can be estimated using the stochastic scales of
heterogeneity, that is, ah and av instead of ax and a z are applied to
the computation of the spectral density functions (PSDF) in (13),
(15) and (16). The theoretical scattering attenuation expression is
validated by comparing to numerical results in Section 6.

5 N U M E R I C A L M O D E L L I N G

We consider a plausible set of physical properties at the upper man-
tle from the Earth model by Kennett et al. (1995). We set P-wave
velocity to be 8.325 km s−1, S-wave velocity 4.5 km s−1, and the
density 3.4 g cm−3. The size of medium is 45 × 90 km and the do-
main is represented by 256 × 512 grid points. The top and bottom
artificial boundaries are treated with absorbing boundary condition,
and the artificial boundaries on both sides are considered to have
periodic boundary condition that imitates horizontally unbounded
media.

Plane P waves are incident vertically, and the source time func-
tion is the Ricker wavelet with dominant frequency of 4.5 Hz. 12
receiver arrays are deployed perpendicularly to the incidence direc-
tion at every 5.45 km from the source position along the incidence
direction. Each receiver array consists of 256 receivers and the in-
terval between adjacent receivers in a receiver array is 175.8 m. The
propagation distances to the shortest and the longest receiver arrays
are 5.45 and 65.39 km.

We consider the exponential anisometric random model (13). The
random models are constructed in the wavenumber domain by as-
signing random phases to a spectral density function at each grid
point (Hong & Kennett 2003a). The spectral random variation is con-
verted to spatial random variation by Fourier transform. The inclined
anisometric random media are designed by rotating a reference ran-
dom model (see, Fig. 2b). We consider 5 per cent perturbation in
P-wave velocity. The shear velocity perturbation is set to be twice
the P velocity perturbation (i.e. K β = 2), which is plausible in the
mantle (see, Robertson & Woodhouse 1996; Romanowicz 2001).
The density perturbation is much less resolvable from seismic data
(Kennett 1998; Romanowicz 2001). Considering the general rela-
tionship between velocity and density in the Earth (Birch 1961; Sato

& Fehler 1998), we apply 4 per cent perturbation in the density (i.e.
K ρ = 0.8).

We consider the vertical scale of anisometric heterogeneity as the
minor scale, and the horizontal scale as the major scale. We set the
horizontal scale to vary in the order of 2 from 501 m through 1003 m
and 2005 m to 4010 m, and the vertical scale (a z) to be constant by
501 m. The apparent stochastic scales in inclined incidence system
vary with the relative incidence angle (ϕ i ). When ϕ i is 90◦, the
stochastic scale in the incidence direction (av) is equal to ax. We
consider five relative incidence angles (ϕ i ) of 0, 30, 45, 60 and 90◦

in the modelling.
A wavelet-based method (Hong & Kennett 2002a,b, 2003b, 2004)

is used for modelling of wave propagation in these random media.
The wavelet-based method is based on the full wave equation, and
the spatial differentiations (∂ x , ∂ z) in the wave equation are applied
in the wavelet space using an operator projection technique. The
spatial differentiation in wavelet space allows us to have accurate
responses of both high- and low-frequency variation in medium.
Hong & Kennett (2003a) pointed out that artificial attenuation can
be included in numerical simulation in random media due to fre-
quent variation in physical properties when a low order of numerical
modelling technique is applied. Also, the wavelet-based method is
numerically stable even in highly perturbed media, and thus suitable
for modelling in random media.

6 S C AT T E R I N G AT T E N UAT I O N

Scattered waves are generated when waves encounter hetero-
geneities. In isotropic random media, the radiation pattern of in-
cident waves controls the scattering energy distribution around a
heterogeneity (Wu & Aki 1985a). In anisometric random media,
the relative incidence angle plays an additional important role in the
scattered energy distribution. Thus, the scattering feature in aniso-
metric random medium can be identified with the relative incidence
angle and the aspect ratio between the major and minor scales.

Fig. 3 displays synthetic time responses from anisometric ran-
dom media with ax of 4010 m and a z of 501 m for various relative
incidence angles (ϕ i = 0, 30, 45, 60, 90◦). We present also the time
responses from isotropic random medium (ax = a z = 4010 m) for
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Figure 3. Time responses at media with ax = 4010 m and a z = 501 m for various incidence angles; (a) ϕ = 0◦, (b) 30◦, (c) 45◦, (d) 60◦ and (e) 90◦. (f) Time
responses at isotropic random media (ax = a z = 4010 m) are presented for comparison. Scattered wavefields of ϕ i = 0◦ looks weaker than those of the isotropy
case even though average scale of heterogeneity is larger in the isotropy case. The scattered wavefield of the isotropy case is composed of strong diffracted
waves, which are observed weak in anisotropic media.

comparison. The phase and amplitude fluctuations and the scattering
strength vary with the relative incidence angle (ϕ i ).

The phase fluctuation of primary waves is significant in isotropic
random media due to the diffraction and refraction effect (Müller
& Shapiro 2003). The apparent geometrical anisotropy decreases
with relative incidence angle until 45◦, and then increases until 90◦

(see, Fig. 4). The phase fluctuation observed in anisometric random
media generally varies with the apparent anisotropy rate. The phase
fluctuation of ϕ i = 60◦, however, appears to be stronger than that of
ϕ i = 45◦ where the heterogeneities are stochastically isotropic due
to the increase of forward scattering with the relative incidence angle
and anisotropic energy distribution. The discussion is extended in
the following section.

We measure scattering attenuation from synthetic time records of
various relative incidence angles (ϕ i = 0, 30, 45, 60, 90◦). Theoreti-
cal scattering attenuations from (9) are compared with the numerical
results. The scattering attenuation of time records is measured using
the Q definition (Aki & Richards 1980):

Q−1(ω) = 2α0

ωr
ln

[
A0(ω)

Ar (ω)

]
, (18)
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Figure 4. Stochastic-scale variation (ah, av) with the relative incidence
angle from equation (17) when ax is 4010 m and a z is 501 m. The horizontal
stochastic scale (ah) decreases fast with the relative incidence angle, and the
decreasing rate is proportional to the aspect ratio (ax/a z).
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where ω is angular frequency, r is the propagation distance, and A0

and Ar are the spectral amplitudes at the origin and the receiver. The
spectral amplitudes of primary waves are measured by stacking the
amplitudes of tapered records (Hong & Kennett 2003a, 2004).

Scattering attenuation is over or underestimated at short distance,
and stable scattering attenuation can be measured at a sufficiently
large distance (Hong et al. 2005). The seismograms of the 12th
receiver array, the furthest array from the source position, are used
for the scattering attenuation measurement. In Fig. 5, we compare the
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Figure 5. Scattering attenuation variations with normalized wavenumber (kax) in (a) isotropic random media and anisotropic random media of (b) ϕ i = 0◦, (c)
30◦, (d) 45◦, (e) 60◦ and (f) 90◦. The vertical heterogeneity scale (a z) is set constant by 501 m (kdaz = 1.7, where kd is the wavenumber of dominant frequency)
in the anisotropic random media, but a z is set equal to ax in isotropy cases. Results are marked with filled circles (ax = 501 m data set), open circles (ax =
1003 m), closed squares (ax = 2005 m) and open squares (ax = 4010 m). For comparisons with scattering attenuations in inclined systems (ϕ i = 0, 30, 60◦) for
the case of ax = 2005 m, those in corresponding paraxial incidence systems are presented in the figures with asterisks. The theoretical scattering attenuation
curves from (9) are included for comparisons with numerical results. Also, the theoretical curves for isotropic random media are additionally included in the
figures for anisotropy cases in order to understand the relative variation. The numerical results from media with 5 per cent of velocity perturbation are placed
in a region between the theoretical curves with θ min = 30◦ and 60◦, and this result agrees with previous studies (e.g. Hong et al. 2004).

scattering attenuation in random media with theoretical prediction
from eq. (9). The scattering attenuation variation in isotropic random
media is also presented for comparison with those of anisometric
media.

The theoretical scattering attenuation curves for inclined inci-
dence systems in Fig. 5 are calculated using the stochastic scales
of heterogeneity in the incident and tangential directions. In order
to verify this approach, we construct paraxial anisometric system
with use of the stochastic scales measured from inclined incidence
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systems, and calculate time records. The scattering attenuations ob-
tained from inclined incidence systems and their equivalent paraxial
incidence systems are compared for cases of ax = 2005 m and a z =
501 m (see, Figs 5c–e). The scattering attenuations measured from
the corresponding paraxial incidence systems are marked with as-
terisks in the figures. The scattering attenuations between the two
systems are fairly close each other. This indicates that the scattering
attenuation in anisometric random media is dependent mainly on
the scales in the incident and tangential directions.

The measured scattering attenuations of all cases are placed in a
zone between the theoretical curves with minimum scattering angle
(θ min) of 30◦ and 60◦. The minimum scattering angle is a stochastic
angle span for correction of forward scattering energy that comple-
ments the primary wave (Hong 2004). As the perturbation strength
in the medium increases, apparent coherent forward scattering is
strengthened at large normalized wavenumber (ka > 1) (Hong et al.
2005). Thus, the minimum scattering angle appears to increase with
perturbation strength at the large normalized wavenumber (Hong &
Kennett 2003a; Hong et al. 2005).

We translate kax into kah using eq. (17), and present the scattering
attenuation variation as function of kah for ϕ i of 30, 45, 60◦ (Fig. 6).
The corresponding theoretical scattering attenuation curves are ob-
tained using eqs (9) and (17). The systems of ϕ i = 0◦ and 90◦ are
the extreme cases where ah corresponds to either ax or a z , that is,
ah = ax at ϕ i = 0◦ and ah = a z at ϕ i = 90◦. Thus, the scattering
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Figure 6. Scattering attenuation variations with kah in (a) isotropic random media and anisotropic random media of (b) ϕ i = 30◦, (c) 45◦ and (d) 60◦. The
parameters and the symbols follow the notation in Fig. 5. The variation of scattering attenuation in isotropic random media which is presented in Fig. 5(a) for
reference. Note that ax is equal to ah for isotropic random media. Scattering attenuations of anisometric is close to those of isotropic random media at low kah

regime (kah < 3), and discrepancy is raised at large kah regime (kah > 3).

attenuation variations with kah at ϕ i = 0◦ and 90◦ corresponds to
Figs 5(b) and (e).

The trend of scattering attenuation variation with kah in anisomet-
ric random media is comparable to that of isotropic random media
at the low kah regime (kah < 3). However, scattering attenuation
in anisometric random media is much lower than that in isotropic
random medium at high kah (kah > 3). That is, when ah is large (i.e.
aspect ratio ax/a z is large), scattering is weakened and diffraction
and refraction is strengthened instead.

7 C O DA A N D E N E RG Y T R A N S M I S S I O N

7.1 General features

We investigate the scattered energy distribution with wave incidence
direction at anisometric random media. In the previous section, it
was shown that the energy lost by scattering in oblique incidence
system can be calculated with an equivalent paraxial incidence sys-
tem. The total energy in an elastic system is conserved, and the
lost energy of primary waves by scattering propagates in a form
of scattered waves. Also, when scattered wavefields are diffused,
(i.e. in a static state of homogeneous energy distribution throughout
the medium), it is expected that the coda waves of oblique inci-
dence system and the equivalent paraxial incidence system display
a same level of energy. Thus, comparison between the two systems
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Figure 7. Comparisons of (a) x- and (b) z-component envelopes between an inclined system with ϕ i = 45◦ and its corresponding paraxial incidence system
at propagation distances of 10.9, 38.1 and 65.4 km. The horizontal heterogeneity scale (ax) of the inclined system is 2005 m, and the vertical scale (a z) is
501 m. The rms envelopes are presented in Fig. 9(b).

will allow us to understand the temporal distribution of scattered
energy.
The idea of measuring scattering power from local seismic coda at
a time of homogeneous scattered-energy distribution has been ap-
plied widely in field data analyses after Aki & Chouet (1975) and
Aki (1980). The scattering strength is expressed in either quality
factor (e.g. Frankel et al. 1990; Yoshimoto et al. 1993) or scattering
coefficient (Sato & Fehler 1998). As the heterogeneity distribution
in the Earth is not uniform and the scale of heterogeneity varies
with depth and lateral location, the quantification of teleseismic
coda energy provides the stochastic average properties of all het-
erogeneities on propagation paths. The temporal variation of coda
level is dependent mostly on the scattering radiation pattern and the
spatial distribution of scatterers. Thus, the investigation of temporal
coda level variation allows us to understand the scattered energy
distribution in anisometric random media.

Fig. 7 shows the coda envelopes in x and z components for an
anisometric random medium. The two coda envelopes are strongly
correlated each other. Also, as the primary energy is partitioned
during propagation in random media due to the phase fluctuation and
diffraction on heterogeneity, a part of primary energy is recorded in
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Figure 8. (a) Comparison between rms envelopes of all records and the reference envelope. (b) The standard deviation (σ ) of the envelopes of records from
the reference envelope and the normalized standard deviation, which is computed by dividing the standard deviation by the reference envelope (i.e. σ/A0(t)).
The standard deviation is far below the level of the reference envelope, and the normalized standard deviation is measured almost constant by around 0.37. The
same reference envelope is plotted in a log scale in (a) and in actual scale in (b).

the tangential component (Hong & Kennett 2003a). Thus, we use the
root-mean-square (rms) envelope of x- and z-component envelopes
as the reference envelope (Fig. 8). The reference mean rms envelope
is calculated by averaging all rms envelope of records (Fig. 8a).
In this study, 256 synthetic records are used in the computation
of the reference envelope. The standard deviation (σ ) of each rms
envelope from the reference envelope is far below the level of the
mean envelope (8b). The normalized standard deviation, which is
given by σ/A0(t) where A0(t) is the amplitude of the mean envelope
at time t, is measured constant in coda by 0.37. In this study, we
present the amplitudes of envelopes in a log scale to display the coda
variation clearly. The amplitude range in the log scale is selected to
display scientifically meaningful amplitudes (amplitudes larger than
0.005 times of primary-wave amplitude). An envelope in both a log
scale and actual scale is shown in Fig. 8.

In Fig. 9, we compare the rms envelopes of oblique systems with
those of their corresponding paraxial incidence systems at three dis-
tances (r = 10.89, 38.14, 65.39 km). The coda just after the primary
waves (P wave in this study) of oblique system displays a higher
amplitude than that of the paraxial incidence system. This energy
accretion at the early coda in the inclined system is strengthened
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Figure 9. Comparisons of rms envelopes between inclined systems with ax = 2005 m and a z = 501 m and their corresponding paraxial incidence systems at
propagation distances of 10.9, 38.1 and 65.4 km. The relative incidence angles (ϕ i ) are (a) 30◦, (b) 45◦ and (c) 60◦. Coda level changes with ϕ i . (d) Empirical
division of coda wave trains in terms of stochastic equilibrium. The stochastic equilibrium is established in coda at a time range of 4Tp/3 to 2Tp, where Tp is
the traveltime of primary waves. For detailed description, we refer to the text.

with propagation distance and the relative incidence angle. The en-
ergy accretion is observed for a time of about Tp/3 after the primary
waves, where Tp is the traveltime of primary wave (see, Fig. 9d).
Then the two systems display a similar coda energy level for about
2Tp/3. The equality in coda level between the two systems, however,
is not displayed after a lapse time of about 2Tp due to significant
energy decrease at coda in oblique system. The coda in paraxial
incidence system, on the other hand, displays a consistent level of
energy. The discrepancy in coda levels between the two systems
appears to increase temporally, and then decreases progressively
with time. After a sufficient time, the codas between the two sys-
tems display an equivalent level of energy. The time required for
the equivalent coda level is proportional to the relative incidence
angle.

The observed temporal coda variation can be explained by the
energy partition between forward and backward scattered waves.
When a wave front is interrupted by heterogeneity, scattered waves
are generated. The scattered energy is distributed by the scattering
radiation pattern that depends on the shape of heterogeneity and
the incidence angle. The scattered waves propagating backward are
observed in receivers placed behind the scatterer. On the other hand,
forward scattered waves are observed in receivers placed ahead of
the scatterer. In particular, the forward scattered waves with a shal-
low scattering angle propagate just after the primary wave front.
Thus, the scattered energy following after the primary wave front

grows continuously with propagation distance (see, the envelopes
of r = 65.39 km), which results in the energy accretion at early
coda. This energy accretion effect is strengthened with the relative
incidence angle in oblique incidence system.

The temporal coda level equality between the two systems at a
lapse time of 4Tp/3 to 2Tp develops by an energy balance of single-
scattered waves. The temporal energy equilibrium dose not last after
2 Tp because the thickness of the layer with anisometric heterogene-
ity is limited. In early coda, single scattered waves are dominant. The
single scattered waves in coda are the sum of forward and backward
single scattered waves. Here, the forward scattered waves are a result
of scattering at the heterogeneities in the reverse propagation direc-
tion. On the other hand, the backward scattered waves are generated
from the heterogeneities in the propagation direction. Thus, when
waves are incident into a layer with random heterogeneities, the re-
ceivers at short distances record mainly the backward-propagating
scattered energy. On the other hand, the receivers placed near the
other end of the layer record mainly the forward-propagating scat-
tered energy. The coda envelopes presented in eq. (9) are for re-
ceivers at short distances, the sources of forward scattered energy
is less than those of backward scattered energy.

When, however, scattered waves are well mixed and multiple
scattering is dominant (i.e. the scattered wavefield is diffused), the
coda level is the same throughout the receivers in the media. The
temporal amplitude variation of seismic coda satisfies a rule (e.g.
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Sato & Fehler 1998):

A(t) = C
1

t p
exp

[
− ωt

2Qc

]
, (19)

where ω is the angular frequency, t is time, C is a constant, Qc is
the coda quality factor, p is the geometrical spreading parameter
with a value 1.0 for 3-D body waves, and 0.5 for 2-D body waves
(equivalently, 3-D surface waves). When the coda is diffused, it is
dominantly influenced by the intrinsic attenuation (Q−1

i ) that counts
for the inelastic absorption in the media, that is, Qc ≈Qi (Shapiro
et al. 2000). Thus, the temporal coda variation can be expressed
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Figure 10. Comparisons of envelopes with changes of ax (ax/a0 = 1, 2, 4, 8, and a z = a0 = 501 m) in anisotropic random media for various relative incidence
angles ((a) ϕ i = 0◦, (b) 30◦, (c) 45◦, (d) 60◦, (e) 90◦) at a propagation distance of 43.6 km. (e) Envelope-level changes with heterogeneity scales (ax/a0 =
a z/a0 = 1, 2, 4, 8) in isotropic random media. The coda level change with heterogeneity scale is noticeable in small angles (ϕ i = 0, 30◦), and is weakened
with increase of ϕ i . The coda level variation with heterogeneity scale much large in isotropic random media.

in terms of the intrinsic absorption and geometrical spreading
(Margerin 2005). As the intrinsic attenuation factor is not considered
in the modelling (i.e. Q−1

i = 0), the temporal amplitude variation of
diffused coda can be expressed simply by

A(t) = C t−p. (20)

As, however, the scattering radiation is dependent on the relative
incidence direction and the aspect ratio, the lapse time required
for seismic diffusion appears to vary with the geometry. Compar-
isons between theoretical trend and the envelopes are made for
isotropic and anisometric media with ϕ i = 0◦ where the diffusion
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Figure 11. Envelope changes with relative incidence angles (ϕ i = 0, 30,
45, 60, 90◦) for three different aspect ratios; (a) ax/a z = 2, (b) ax/a z =
4, (c) ax/a z = 8. The propagation distance is 43.6 km. Energy accretion is
made at the early coda wave trains by strengthening of forward scattering
with increase of ϕ i .

state is established early (Fig. 10). The diffused codas satisfy the
trend.

7.2 Implication to field observation

The energy accretion at the early coda of inclined incidence sys-
tem looks to be an important feature for sounding of heterogeneity

in the Earth’s deep interior. In previous studies (e.g. Hedlin et al.
1997), precursor amplitude relative to the primary phase (e.g. PKP)
is used to infer the heterogeneity size and the perturbation strength.
The early coda of a rectangular medium is observed partly as in
a form of precursor in the spherical Earth. Thus, it appears that
systematic under or overestimation of perturbation strength can be
made from the precursor analysis without proper consideration of
the anisotropic scattered energy distribution by anisometric hetero-
geneities. Assuming the horizontally elongated heterogeneities in
the deep Earth (Kennett et al. 1998; Romanowicz 2003), the pre-
cursor of deep seismic phase with a large incidence angle will be
strengthened by forward scattering.

Fig. 10 shows the coda level variation with aspect ratio
(= ax/a z). The overall coda level variation with aspect ratio agrees
with the scattering attenuation variation with aspect ratio in Sec-
tion 6. The coda level changes significantly with aspect ratio at small
ϕ i (0, 30◦), while the change is fairly unnoticeable at large ϕ i (60,
90◦). The coda level change is most significant in isotropic random
media (cf. Fig. 5).

In Fig. 11 we compare the coda levels of different ϕ i (0, 30, 45,
60, 90◦) for given aspect ratios (ah/av = 2, 4, 8). The coda levels
of ϕ i between 30 and 90◦ are comparable each other at the time
(4Tp/3−2Tp) of the temporal equality. On the other hand, the coda of
ϕ i = 0◦ displays a noticeable level change with the aspect ratio. This
is because the scattering strength is dependent on the heterogeneity
scale in the tangential direction, and the stochastic heterogeneity
scale in the tangential direction decreases exponentially with ϕ i

(see, Fig. 4). We also note that the energy accretion at the early coda
is strongest at ϕ i of 60◦ due to the combined effect of diffraction
and forward scattering.

From the observation of coda level variation with aspect ratio and
the incident angle, we find that the strength of scattering is mostly
related with the scale of heterogeneity in the tangential direction.
Also, the scale change along the incidence direction rarely affects
the scattering strength. As the diffraction and refraction effects are
strong in isotropic random media and decrease with the aspect ratio
of heterogeneity (Müller & Shapiro 2003), the change of scattering
strength with heterogeneity scale is most prominent in isotropic ran-
dom media. For the estimation of seismic properties of anisometric
heterogeneity, the late coda can be analysed. However, the selection
of the coda of deep seismic phase at stable stages looks impractical
due to the contamination by late-arriving seismic phases. On the
other hand, it looks practical to use the data set classified by the in-
cidence angle and infer the physical properties from the assembled
observations.

8 D I S C U S S I O N A N D C O N C L U S I O N S

We have investigated the features of scattering in geometrically
anisotropic random media. A theoretical expression for scattering
attenuation in anisometric elastic random media was formulated.
The theoretical scattering attenuation prediction agrees with numer-
ical modelling results well. The scattering in anisometric random
media depends mainly on the stochastic scales of heterogeneity in
the radial and tangential directions. The tangential scale controls
the scattering strength, and the aspect ratio between the radial and
tangential scales affects the strength of diffraction and refraction
on the heterogeneity.

The coda shape in anisometric random media is highly dependent
on the nature of heterogeneity such as aspect ratio and geometry
and the wave incidence angle. Coda wave trains can be divided into
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several parts following the constituting scattered energy composi-
tion. Forward scattering is strengthened with the relative incidence
angle, and the forward scattered waves enhance the early coda. The
energy accretion by the forward scattered waves increases with the
propagation distance and the relative incidence angle. This effect is
expected to enhance the precursor and early coda of deep seismic
phase travelling through anisometric heterogeneous media.

Scattering level varies sensitively to the tangential scale of het-
erogeneity. Thus, it appears that the sounding of anisometric hetero-
geneity in the Earth’s deep interior from precursors or coda should
be operated by taking account of the incidence direction of the pri-
mary phase. To this end it may be a way to examine the coda level
variation from seismic data set that is classified by the incidence
angle of primary wave. This approach would be particularly useful
for deep seismic phases due to their plane wave fronts.

Velocity anisotropy and intrinsic attenuation would be additional
factors to be considered for conceivable investigation of heterogene-
ity in the Earth. However, the strength of velocity anisotropy (e.g.
Panning & Romanowicz 2004) is usually trivial compared to the ve-
locity and density perturbation strength. Also, since coda attenuation
is the sum of scattering and intrinsic attenuation and the intrinsic
attenuation variation is correlated with the scattering attenuation
variation, the general scattering feature by anisometric heterogene-
ity observed in the coda variation is expected to be preserved.

We have considered geometrical anisotropy with an idea that the
heterogeneity in the Earth can be represented in terms of continu-
ous stochastic random heterogeneities. However, a localized hetero-
geneity region composed of discrete anisometric scatterers is also
expected in the Earth, for instance partial melting region (Vidale &
Hedlin 1998). The investigation of scattering by discrete anisometric
heterogeneities may be required in this direction.
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A P P E N D I X A : T H E O R E T I C A L D E R I VAT I O N O F S C AT T E R I N G AT T E N UAT I O N
E X P R E S S I O N

We derive theoretical scattering attenuation expression for anisometric random media, based on the multiple forward scattering and single
backscattering approximation (Hong & Kennett 2003a; Hong 2004). We omit the subscript 0 of symbols for the background properties to
simplify mathematical expressions.

Using the scattering forces ( f s
j , j = x , z) in (5) and the Green’s function (Gjk , j , k = x , z) for 2-D elastic waves (Burridge 1976, p. 115),

we can express scattered wavefield (us
j , j = x , z or 1,2) at position x by the perturbation at x′ as

us
j (x) =

2∑
k=1

∫
S

f s
k (x′)G jk(x, x′) dS(x′), (A1)

where S is the area of heterogeneity. The total scattered wavefield is composed of scattered P and S wavefields (uPP
r , uPS

t ), and they can be
written by (Hong & Kennett 2003a)

u P P
r (x) = sin θ u P P

x (x) + cos θ u P P
z (x)

= i

√
kα

8π |x|Cr (θ ) exp

[
− i

(
ωt − kα|x| + π

4

)] ∫
S

ξ (x′) exp[ikα(z − n · x′)] dS(x′),

u P S
t (x) = cos θ u P S

x (x) − sin θ u P S
z (x)

= i

√
k3

αγ
3

8π |x|Ct (θ ) exp

[
− i

(
ωt − kβ |x| + π

4

)] ∫
S

ξ (x′) exp[ikα(z − γ n · x′)] dS(x′), (A2)

where Cr(θ ) and Ct(θ ) are

Cr (θ ) = sin θ
{

C1 AP
11(θ ) sin θ + 2AP

12(θ ) + C2 AP
12(θ )(cos θ − 1)

}
+ cos θ

{
C1 AP

21(θ ) sin θ + 2AP
22(θ ) + C2 AP

22(θ )(cos θ − 1)
}
,

Ct (θ ) = cos θ
{

C1 AS
11(θ )γ sin θ + 2AS

12(θ ) + C2 AS
12(θ )(γ cos θ − 1)

}
− sin θ

{
C1 AS

21(θ )γ sin θ + 2AS
22(θ ) + C2 AS

22(θ )(γ cos θ − 1)
}
, (A3)

and Ak
ij (i , j = 1,2, k = P, S) is

AP
11(θ ) = sin2 θ, AP

12(θ ) = sin θ cos θ, AP
21(θ ) = − sin θ cos θ, AP

22(θ ) = cos2 θ,

AS
11(θ ) = cos2 θ, AS

12(θ ) = − sin θ cos θ, AS
21(θ ) = sin θ cos θ, AS

22(θ ) = sin2 θ. (A4)

Here, θ is the scattering direction measured from the vertical axis (z, the incidence direction), and n is the unit vector in x direction.
In order to estimate the total scattered energy, we calculate ensemble-averaged spectral power density of scattered waves:

〈∣∣u P P
r

∣∣2〉 = k3
αWr

8π |x|
×

∫
S

∫
S

〈ξ (x′)ξ (y′)〉 exp[ikα{ez · (x′ − y′) − n · (x′ − y′)}] dS(x′) dS(y′),

〈∣∣u P S
t

∣∣2〉 = k3
αγ

3Wt

8π |x|
×

∫
S

∫
S

〈ξ (x′)ξ (y′)〉 exp[ikα{ez · (x′ − y′) − γ n · (x′ − y′)}] dS(x′) dS(y′), (A5)
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Figure A1. Schematic diagrams of ensemble average (correlation length estimation) of anisometric heterogeneities in (a) vertical and (b) horizontal directions
(O–O′ direction). The correlation length of anisometric heterogeneities in the direction from O to O′ corresponds to the length of overlapping region, and is given
by the distance between C and C′ (i.e. the distance along the tangential direction). Here, the O and O′ correspond to x′ and y′ in eq. (A5). The correlation length
in isotropic random media is measured constant in any direction. In practice, the ensemble average of heterogeneity corresponds to 90◦-rotated autocorrelation
function of the heterogeneity.

where ez is the unit vector in z-axis direction, and Wj ( j = r , t) is

W j = 〈∣∣C j (θ )
∣∣2〉 = 1

M

M∑
i=1

|C j (θi )|2. (A6)

Here, M is a sufficiently large number and θ i varies randomly between −π and π with i. Thus, Wj can be written simply as

W j = 1

2π

∫ π

−π

[C j (φ)]2 dφ, (A7)

and these are given by

Wr = (
64 + 7C2

1 − 64C2 + 28C2
2

)
/32,

Wt = (
64 − 64C2 + 16C2

2 + γ 2C2
1 + 4γ 2C2

2

)
/32. (A8)

In order to simplify eq. (A5), we make a change of variables from x′ and y′ to p (=(x′ + y′)/2, centre-of-mass coordinate variable) and q
(=(x′ − y′), relative coordinate variable) and express the ensemble of fluctuation (〈ξ (x′) ξ (y′)〉) with autocorrelation function (N(q)):

〈∣∣u P P
r

∣∣2〉 = k3
αWr S

8π |x|
∫

S

N ∗(q) exp[ikαEr · q] dS(q),

〈∣∣u P S
t

∣∣2〉 = k3
αγ

3Wt S

8π |x|
∫

S

N ∗(q) exp[ikαEt · q] dS(q), (A9)

where N ∗ is the orthogonal autocorrelation function (ACF), which corresponds to the 90◦-rotated N . As described in Fig. A1, in practice, the
ensemble average of anisometric heterogeneity in a given direction (O − O ′ in the figure) corresponds to the correlation in the tangential
direction (C−C ′). Thus, the measured ACF is observed in a 90◦ rotated form. The vectors Er and Et in eq. (A9) are given by

Er = ez − n = (− sin θ, 1 − cos θ ),

Et = ez − γ n = (−γ sin θ, 1 − γ cos θ ).
(A10)

The autocorrelation function N and its Fourier transform companion, the power spectral density function P are given in (13), (15), and (16).
The integrals in (A9) correspond to 2-D Fourier transforms of autocorrelation function, and can be expressed with its normalized power

spectral density function (cf. Hong & Kennett 2003a)

〈|u P P
r |2〉 = k3

αWr S

(4π )2 |x| P
∗(kr ),

〈|u P S
t |2〉 = k3

αγ
3Wt S

(4π )2 |x| P∗(kt ), (A11)

where P∗ is the power spectral density function for N ∗, and the wavenumber vector k j ( j = r , t) is given by kα E j from (A10). Here, the
power spectral density function satisfies the relationship of P∗(k) = P(k∗) where k∗

i = (1 − δ i j)kj (i , j = x , z). Thus, (A11) can be rewritten
as

〈|u P P
r |2〉 = k3

αWr S

(4π )2 |x| P(k∗
r ),

〈|u P S
t |2〉 = k3

αγ
3Wt S

(4π )2 |x| P(k∗
t ). (A12)
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The energy attenuation corresponds to energy loss per unit area divided by the wavenumber of incident waves, so the resultant scattering
attenuation is given by (Hong & Kennett 2003a; Hong 2004)

Q−1
s = ε2

kαS

∫
θ

{〈|u P P
r |2〉 + 1

γ

〈|u P S
t |2〉} d A, (A13)

where A is the arc length and dA is given by r dθ where r ≈ |x| in (A12). The influence of forward scattered waves on scattering attenuation
is corrected by introducing minimum scattering angle. Finally, the theoretical scattering attenuation expression is given by

Q−1
s

ε2
= k2

αWr

(4π )2

∫ 2π−θmin

θmin

P
(
k∗

r

)
dθ + k2

αγ
2Wt

(4π )2

∫ 2π−θmin−�φ

θmin+�φ

P
(
k∗

t

)
dθ. (A14)
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