
1.  Introduction
Most great earthquakes occurred in the circum-Pacific seismic zone, producing large seismic damages 
(Obara & Kato, 2016; R. E. Wells & Blakely, 2003; Ye et al., 2018). The prediction of impending great earth-
quakes may be important for timely mitigation of seismic hazards. Tectonic loading may be a principal 
force to nucleate earthquakes (Gardi et al., 2006; Ide, 2013; Qiu & Shi, 2004; Uyeda & Kanamori, 1979). In 
particular, the spatial distribution of strain accumulation during the interseismic period may control large 
earthquake occurrence (Konca et al., 2008; Liberty et al., 2013). The interplate coupling may be inferred 
from slip deficit and strain rate (Yokota et al., 2016). Additionally, slab geometry, asperity, slow slip, thermal 
environment, stable sliding, and fluid contents may play additional roles in nucleation of earthquakes on 
plate boundaries (Araki et  al.,  2017; Chapman & Melbourne,  2009; Hippchen & Hyndman,  2008; Keid-
ing et al., 2009; Perfettini & Avouac, 2004; Saffer et al., 2000; Schwartz & Rokosky, 2007; Townend & Zo-
back, 2006; Uchida et al., 2016; R. E. Wells & Blakely, 2003; Yokota et al., 2016).

It was recognized that oceanic sediment is a major resource of fluids delivered on the slab surface (Ruff, 1989; 
Seno, 2017). Recently, it was suggested that sediment density may be more important than sediment thick-
ness (Han et al., 2017). The overpressurized fluids from slab sediments or hydrated minerals may compose 
environments which are favorable to accommodate great earthquakes along interplate boundaries (Delouis 
et al., 1996; Hasegawa, 2017; Saffer et al., 2000; Streit & Cox, 2001). However, it is difficult to measure the 
induced pore fluid pressures and fault strengths on the interplate boundaries.

Abstract  Megathrust earthquake occurrence is dependent on the physical properties and stress 
environments of convergent plate boundaries. Local and regional earthquakes may modulate the stress 
environment fractionally that affects the nucleation of next earthquakes. This study investigates the 
influence of precedent earthquakes on the induction of forthcoming earthquakes around the circum-
Pacific plate boundaries. We assess the global stress perturbation induced by 1,636 earthquakes combining 
1,457 earthquakes with moment magnitudes greater than or equal to WM 7.0 and 179 earthquakes with 
moment magnitudes WM 6.4–6.9 in 1900–2020. We stack the induced Coulomb stress changes for optimally 
oriented reverse faults. The circum-Pacific region is divided by eight subregions. The cumulative Coulomb 
stress changes reach up to the order of tens to hundreds of bar at the convergent plate boundaries. 
Descendant large earthquakes dominantly occurred in the regions with large lateral gradients of 
cumulative Coulomb stress changes induced by precedent earthquakes. The cumulative Coulomb stress 
changes for 120 years are comparable among subduction zones. The seismicity in subduction zones may 
depend on the strength of the stress field as well as the lateral gradient in the stress field. The instability 
and inhomogeneity in stress fields may play a major role in the nucleation of megathrust earthquakes.

Plain Language Summary  Great earthquakes produce significant damages over large areas. 
The timely identification of impending earthquakes is crucial for seismic hazard mitigation. We assess the 
stress induced from neighboring earthquakes for 120 years around the circum-Pacific plate boundaries. 
Large earthquakes perturbed the stress fields. We analyze 1,636 earthquakes with moment magnitudes 
greater than or equal to 6.4 in 1900–2020. The cumulative Coulomb stress changes reach up to the order 
of tens to hundreds of bar at the plate boundaries. Large earthquakes followed in the regions with large 
lateral gradients of cumulative Coulomb stress changes induced by precedent earthquakes. Laterally 
heterogeneous stress fields may play an important role in nucleation of great earthquakes.
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Efforts were devoted to study the stress loading procedure and mechanism (Araki et  al.,  2017; Dixon 
et al., 2014; Obara & Kato, 2016; Uchida et al., 2016; Yokota et al., 2016). Slip deficits may reflect the stresses 
accumulated on slab surfaces (Yokota et al., 2016). The stress on a slab surface may be further modulated 
by slow earthquakes. However, the physical mechanism and relationship between stress accumulation and 
release by slow slips were only minimally understood (Araki et al., 2017; Obara & Kato, 2016; Saffer & Wal-
lace, 2015; Uchida et al., 2016; Wallace et al., 2016).

There were manifold observations on the nature of megathrust earthquake nucleation environments. 
Suggestions included the asperity of the strong crust of upper plates (Beck & Christensen, 1991; Ryan & 
Scholl,  1993), subducting seamounts (Cloos,  1992; Cloos & Shreve,  1994), or apparent presentations of 
seismic gaps (Scholz, 1990; Thatcher, 1990). A megathrust earthquake may occur by rupturing a part of 
one asperity or several asperities successively (Konca et al., 2008; Rundle & Kanamori, 1987). Additional-
ly, rigorous efforts were devoted to understanding the relative influence of each factor on the megathrust 
earthquake nucleation (Oleskevich et al., 1999).

The triggering mechanisms of megathrust earthquakes have, however, been only poorly understood. Stress 
transferred from adjacent earthquakes often affects the seismicity (McCloskey et al., 2005; Stein et al., 1997; 
Toda et al., 2012). In particular, stress shadows may last for tens to hundreds of years, thus preventing the 
occurrence of subsequent earthquakes (Liu et al., 2018; Maccaferri et al., 2013; Sevilgen et al., 2012). It was 
suggested that stress transfer plays a role in earthquake nucleation (Boyd et al., 1999; Schwartz, 1999). The 
transferred stress is crucial in temporal seismicity evolution (Bowman & King, 2001; Nalbant et al., 1998).

The earthquake magnitude-frequency relationship, maximum magnitude, and yield stress level may differ 
according to the subduction zone depending on the slab geometry, thermal environment, and fluid contents 
(Currie et al., 2002; Hicks et al., 2012; Hippchen & Hyndman, 2008; Koerner et al., 2004). There were 19 
great earthquakes with moment magnitudes greater than or equal to 8.5 in 1900–2020. However, the earth-
quakes were distributed unevenly over time, presenting temporal clustering. Six recent great earthquakes 
occurred from 2004 to 2012. The temporal clustering of great earthquakes suggests that temporal factors 
may play a crucial role in nucleation. Thus, temporal evolution of influencing factors is important.

Large earthquakes may induce significant dynamic and static stress changes, triggering earthquakes at local 
and regional distances (King & Cocco, 2001; Stein et al., 1997; Toda et al., 2012). The postseismic earth-
quakes with moment magnitudes of 4.0–5.0 are generally correlated with the Coulomb stress changes in-
duced by precedent earthquakes (Ammon et al., 2008; Cocco et al., 2000; Stein et al., 1997). The aftershock 
rate and size are dependent on the level of induced stress (Felzer et  al.,  2004; Harris & Simpson,  1998; 
King et al., 1994; J. Lin & Stein, 2004; Ma et al., 2005; Nalbant et al., 1998; Stein et al., 1994, 1997; Toda 
et al., 2005). There are, however, some controversial reports regarding the influence of stress shadows on 
postseismicity (Green et al., 2015; Hong et al., 2015; W.-H. Wang, 2000).

We investigate the temporal changes in the stress field for 120 years and the correlation with postseismicity 
of moderate-size earthquakes in the circum-Pacific seismic zone, which is the most active seismic zone (Fig-
ure 1a). The influence of the precedent earthquakes is examined by comparison between the cumulative 
Coulomb stress changes and descendant seismicity. We consider only the induced stress from neighboring 
and precedent earthquakes. We assess the total amount of induced stress. We infer the influence of induced 
stress on the triggering of great earthquakes. This approach may allow us to quantify the variance of stress 
with time along plate boundaries. We may quantify the occurrences of stress field changes.

2.  Data
We collect the event information of global earthquakes since 1900 (Ammon et al., 2005; Asano et al., 2005; 
Baba et  al.,  2002; Courboulex et  al.,  1997; Elliott et  al.,  2010; Engdahl & Villaseñor,  2002; Fujii & Sa-
take, 2013; Fukuyama & Irikura, 1986; Hartzell & Langer, 1993; Hayes, 2017; Hernandez et al., 2001; Ich-
inose et al., 2002, 2003; Ji et al., 2002; Johnson & Satake, 1999; Kobayashi & Koketsu, 2005; Lay et al., 2005; 
Mai & Thingbaijam, 2014; Mendoza, 1993, 1995; Mendoza & Hartzell, 1989, 2013; Mendoza et al., 1994; 
Moreno et al., 2010; Nagai et al., 2001; Okuwaki & Yagi, 2002; Ozawa et al., 2011; Ross et al., 2019; Sekiguchi 
et al., 2002; Song et al., 2008; Wald & Heaton, 1994; Yagi, 2004; Yagi et al., 1998; Yamanaka & Kikuchi, 2004; 
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Ye et al., 2013). We additionally collect the event information for earthquakes since 2005 from the Interna-
tional Seismological Centre (www.isc.ac.uk). There are 1,457 earthquakes with moment magnitudes greater 
than or equal to 7.0 in 1900–2020 (Figure 1a). We additionally find 179 earthquakes with moment mag-
nitudes WM 6.4–6.9 in 1900–2020 to compensate the low seismicity region. We, thus, analyze 1,636 earth-
quakes with magnitudes WM 6.4 in 1900–2020 (Supporting Information S1).

The minimum moment magnitude of earthquakes, certifying the completeness of the earthquake cata-
log, is 3.9 (Figure 1b). The largest moment magnitude is WM 9.5 (Figure 1c). The numbers of earthquakes 
with magnitudes 7.0WM   for every 5 years since 1900 range between 43 and 95 (Figure 1d). Moderate 
earthquakes of WM 4.0–5.0 are populated at depths less than 35 km (Figure 1e). We additionally collect the 
information of historical earthquakes to complement the instrumental seismicity records (Albini, Musson, 
Gomez Capera, et al., 2014; Albini, Musson, Rovida, et al., 2014; Beck et al., 1998).

We divide the plate boundaries around the circum-Pacific seismic zone into eight subregions (Figure 2a). 
We collect the source parameters (event magnitudes, fault lengths, fault widths, slip amounts) and focal 
mechanism solutions of large earthquakes in 1900–2020 from Global Centroid Moment Tensor (CMT) 
catalog (www.globalcmt.org) as well as available resources (Ammon et al., 2005; Asano et al., 2005; Baba 
et al., 2002; Courboulex et al., 1997; Elliott et al., 2010; Engdahl & Villaseñor, 2002; Fujii & Satake, 2013; 
Fukuyama & Irikura,  1986; Hartzell & Langer,  1993; Hayes,  2017; Hernandez et  al.,  2001; Ichinose 
et al., 2002, 2003; Ji et al., 2002; Johnson & Satake, 1999; Kobayashi & Koketsu, 2005; Lay et al., 2005; Mai 
& Thingbaijam, 2014; Mendoza, 1993, 1995; Mendoza & Hartzell, 1989, 2013; Mendoza et al., 1994; Moreno 
et al., 2010; Nagai et al., 2001; Okuwaki & Yagi, 2002; Ozawa et al., 2011; Plafker, 1965; Ross et al., 2019; 
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Figure 1.  Global seismicity and zonation. (a) Earthquakes with moment magnitudes greater than or equal to 7.0 during 1900–2020. The large earthquakes are 
distributed uniformly along the plate boundaries. Major subduction zones are indicated: Aleutian Trench (AT), Izu-Bonin Trench (IBT), Japan Trench (JT), Java 
Trench (JT), Kermadec Trench (KeT), Kuril Trench (KuT), Manus Trench (MsT), Mariana Trench (MaT), Middle America Trench (MAT), New Britain Trench 
(NBT), New Guinea Trench (NGT), New Hebrides Trench (NHT), Peru-Chile Trench (PCT), Philippine Trench (PT), Ryukyu Trench (RT), South Solomon 
Trench (SST), Tonga Trench (TT). (b) Gutenberg-Richter frequency-magnitude relationship of global seismicity with focal depths of 0–50 km in 2013. The 
minimum magnitude ensuring the completeness of the earthquake catalog is 3.9. The b value is 1.13. (c) Temporal distribution of earthquakes with moment 
magnitudes greater than or equal to 7.0 since 1900. (d) Temporal variation in the numbers of large earthquakes. (e) Focal depths of earthquakes with moment 
magnitudes of 4.0 ≤ WM  < 5.0 from 2005 to 2020.

http://www.isc.ac.uk
http://www.globalcmt.org
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Figure 2.  Regional zonation and physical properties along the plate boundaries of the circum-Pacific seismogenic zone: (a) eight subregions, (b) strain rates 
(Kreemer et al., 2014), (c) heat flows (J. H. Davies, 2013), (d) plate speeds (Ide, 2013), (e) plate ages (Müller et al., 2008), (f) slab dipping angles (Gudmundsson 
& Sambridge, 1998), and (g) thermal parameters.
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Sekiguchi et al., 2002; Song et al., 2008; Wald & Heaton, 1994; Yagi, 2004; Yagi et al., 1998; Yamanaka & 
Kikuchi, 2004; Ye et al., 2013).

We find that coseismic slip models of 96 large earthquakes with moment magnitudes WM 7.0 in 1900–
2020 are available from the resources. We collected the coseismic slip models for the 96 earthquakes (Fig-
ure 3). For events with unknown source models (1,540 events), we determine their source parameters (fault 
dimensions, slip amounts) using empirical scaling laws based on moment magnitudes (Blaser et al., 2010; 
Mai & Beroza, 2000; Strasser et al., 2010; D. L. Wells & Coppersmith, 1994). Also, we determine unknown 
fault-plane solutions considering the focal mechanism solutions of adjacent events and subduction-zone 
geometries. We consider the events are placed adjacent when the events occur on the same subduction 
plates in consistent slab-interface geometries.
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Figure 3.  (a) Map of source zones of coseismic slip models for 96 earthquakes with moment magnitudes WM 7.0 in 
1900–2020 (Ammon et al., 2005; Asano et al., 2005; Baba et al., 2002; Courboulex et al., 1997; Elliott et al., 2010; Fujii 
& Satake, 2013; Fukuyama & Irikura, 1986; Hartzell & Langer, 1993; Hayes, 2017; Hernandez et al., 2001; Ichinose 
et al., 2002, 2003; Ji et al., 2002; Johnson & Satake, 1999; Kobayashi & Koketsu, 2005; Mai & Thingbaijam, 2014; 
Mendoza, 1993, 1995; Mendoza & Hartzell, 1989, 2013; Mendoza et al., 1994; Nagai et al., 2001; Okuwaki & Yagi, 2002; 
Ross et al., 2019; Sekiguchi et al., 2002; Song et al., 2008; Wald & Heaton, 1994; Yagi, 2004; Yagi et al., 1998; Yamanaka 
& Kikuchi, 2004; Ye et al., 2013), and enlarged maps of (b) zone 1, (c) zone 5, and (d) zone 8. The source zones of 
coseismic slip models are marked (rectangles). Different colors are used to distinguish individual source models. The 
coseismic slip models are applied in the analysis.
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We investigate possible correlations among seismicity, induced stress, and physical parameters in subduc-
tion zones to identify the influencing factors in earthquake occurrence at subduction zones. We collect the 
physical properties around the convergent plate boundaries. The strain rates vary between 0.03 and 96.11 
× 6 110 yr   (Kreemer et al., 2014) (Figure 2b). The strain rates are 1.05 × 610  to 6.65 × 6 110 yr   in zone 1, 
1.34 × 610  to 22.80 × 6 110 yr   in zone 2, 1.71 × 610  to 26.30 × 6 110 yr   in zone 4, 1.93 × 610  to 26.45 × 

6 110 yr   in zone 5, 0.03 × 610  to 64.78 × 6 110 yr   in zone 6, 1.72 × 610  to 96.11 × 6 110 yr   in zone 7, and 
1.27 × 610  to 10.72 × 6 110 yr   in zone 8.

The heat flows around the subduction zones vary between 13.0 and 455.8 mW/ 2m  (J. H. Davies, 2013) (Fig-
ure 2c). The plate convergent speed varies by location from 13 to 236 mm/yr (Ide, 2013) (Figure 2d). The 
plate convergent speeds are 34.8–80.0 mm/yr in zone 1, 22.0–75.0 mm/yr in zone 2, 63.0–78.8 mm/yr in zone 
3, 71.9–91.9 mm/yr in zone 4, 18.0–111.0 mm/yr in zone 5, 47.0–236.0 mm/yr in zone 6, 24.0–68.0 mm/yr 
in zone 7, and 20–110 mm/yr in zone 8. The ages of converging plates are typically younger than 160 Ma 
(Müller et al., 2008) (Figure 2e).

Slab models are collected from a study (Gudmundsson & Sambridge, 1998). The average dipping angles of 
subducting slabs at depths of less than 50 km are 13.7 to 20.8 in zone 1, 18.4 to 32.3 in zone 2, 20.2 to 
25.9 in zone 4, 17.7 to 45.1 in zone 5, 13.0 to 70.0 in zone 6, 17.2 to 42.2 in zone 7, and 13.4 to 18.8 in 
zone 8 (Figure 2f).

The slab temperature can be approximated using thermal parameters, as well as the product of plate age, 
trench-normal plate convergence velocity, and the sine of the slab dip angle (Kirby et al., 1996; Maunder 
et al., 2019; Syracuse et al., 2010). We calculate the thermal parameters (Figure 2g), which is comparable 
to other studies (Syracuse et al., 2010). The thermal parameters range between 26 and 1,321 km in zone 1, 
between 42 and 888 km in zone 2, between 461 and 2,733 km in zone 4, between 1,361 and 6,974 km in 
zone 5, between 1,262 and 4,623 km in zone 6, between 36 and 11,014 km in zone 7, and between 415 and 
2,805 km in zone 8.

3.  Methods
We assess the Coulomb stress changes in subduction zones that may accommodate large earthquakes (Gao 
& Wang, 2014). The Coulomb stress change, CFS, is determined by (Harris & Simpson, 1998):

     CFS ( ),n p  � (1)

where   is the shear stress change,  is the frictional coefficient,  n is the normal stress change (positive 
for increased compression), and p is the pore fluid pressure change. The frictional coefficient changes 
with the pore pressure. The static Coulomb stress change can be rewritten by (J. Lin & Stein, 2004; Toda 
et al., 2005):

    CFS ,n � (2)

where   is the effective frictional coefficient.

We collect the information on the orientation and magnitude of the ambient regional stress field (Zo-
back, 1992). The ambient stress fields have regionally varying orientations (Zoback, 1992) (see Supporting 
Information S1). It was reported that the orientations of regional stress fields may play major roles to control 
the fault-plane orientations and focal mechanisms (King et al., 1994; Toda et al., 1998). Also, the magnitudes 
of regional stress may affect little on the earthquake triggering as long as they are larger than the earthquake 
stress drops (King et al., 1994; Toda et al., 1998). Simple uniaxial compressions or extensions with constant 
magnitudes may be suitable for representation of regional stress field (King et al., 1994). We apply constant 
magnitudes of principal stress components for calculation of Coulomb stress changes (King et al., 1994; J. 
Lin & Stein, 2004; Stein et al., 1997; Toda et al., 1998).

The magnitudes of principal stress components are 1 100  bar,  2 10  bar, and 3 0  bar (King 
et al., 1994; J. Lin & Stein, 2004; Stein et al., 1997). The maximum and minimum principal stresses (1, 3) 
are oriented horizontally. The intermediate principal stress is oriented in the vertical direction. The source 
and medium properties are represented by Young's modulus, Poisson's ratio, and effective coefficient of 

LEE AND HONG

10.1029/2021GC009927

6 of 39



Geochemistry, Geophysics, Geosystems

friction. The Young's modulus is assumed to be 80 GPa and Poisson's ratio to be 0.25. The shear modulus is 
based on Young's modulus and Poisson's ratio.

There were numerous studies to investigate the effective frictional coefficients in subduction zones includ-
ing Japan Trench, Nankai Trough, Kuril Trench, Java Trench, Manila Trench, Kermadec Trench, Middle 
America Trench (Furukawa & Uyeda, 1989; Gao & Wang, 2014; Harris & Wang, 2002; Harris et al., 2010; 
Langseth & Silver, 1996; K. Wang & Suyehiro, 1999). The effective frictional coefficients   at seismogenic 
depths (up to 50 km) were reported to be 0.025–0.13, mostly around 0.03. Thermal structures and fric-
tional heats in subduction faults as well as seismological observations suggest that the effective frictional 
coefficients may be less than 0.05 in subduction zones (e.g., Cascadia subduction zone, Nankai Trough, 
Japan Trench, Aleutian Trench, Java Trench, Peru-Chile Trench, Middle America Trench, Mariana Trench, 
Kermadec Trench, Kuril Trench, Izu-Bonin Trench) (Hippchen & Hyndman, 2008; Magee & Zoback, 1993; 
Peacock & Wang, 1999; Spinelli & Wang, 2008; von Herzen et al., 2001; Wada & Wang, 2009; K. Wang & 
He, 1999; K. Wang & Suyehiro, 1999; K. Wang et al., 1995). It is noteworthy that conservative plate bound-
aries including San Andreas fault zone present similar effective frictional coefficients as low as 0.03–0.04 
(Fulton & Saffer, 2009; Gao & Wang, 2017; Williams et al., 2004). In this study, we set the effective frictional 
coefficient   to be 0.03 considering the observed values at seismogenic zones in subduction zones.

We implement coseismic slip models of 96 large earthquakes with moment magnitudes 7.0WM . For 
events with unknown source parameters, we determine the unknown source parameters (e.g., fault dimen-
sions, slip amounts) using empirical source scaling laws (Blaser et al., 2010; Mai & Beroza, 2000; Strasser 
et al., 2010; D. L. Wells & Coppersmith, 1994) (Table 1).

We calculated Coulomb stress changes on optimally oriented faults in ambient regional stress field. We 
stack the Coulomb stress changes induced by large earthquakes. Note that a series of large earthquakes may 
perturb the static stress field in the medium (Ammon et al., 2008). It is not practically possible to compute 
continuous cumulative Coulomb stress changes for situations when the geometries of receiver faults in the 
region are inhomogeneous. We consider a representative receiver fault geometry for a region. To improve 
the accuracy, we divide the convergent margins by small regions where single representative fault geome-
tries can be considered.

We consider optimally oriented reverse faults at a representative depth of 30 km for presentation of Cou-
lomb stress changes, considering the typical seismogenic depths of megathrust earthquakes in subduction 
zones (Audet & Kim, 2016). We additionally calculate the Coulomb stress changes for optimally oriented 
strike-slip faults around the plate boundary between the North American plate and Pacific plate and tri-
ple-junction region between Indian, Australian and Sunda plates. Large strike-slip earthquakes often occur 
in the regions.

The stacking of Coulomb stress changes on a 2-D plane is valid, since the stress induced by a single source 
decays rapidly with distance. The circum-Pacific seismic zone was discretized by cells with size of 3-by-3.  
One side of each cell was placed on the plate boundary, and the other sides were placed in inner-trench 
regions. This configuration of discrete cells enabled the examination of the physical properties of the 

LEE AND HONG

10.1029/2021GC009927

7 of 39

Fault type LR - WM  relationship WR - WM  relationship

Strike-slip log( ) 2.57 0.62L WR M    log( ) 3.80 2.59W WR M  

Reverse log( ) 2.42 0.58L WR M    log( ) 4.37 1.95W WR M  

Normal log( ) 1.88 0.50L WR M    log( ) 4.04 2.11W WR M  

Table 1 
Relationships Between Rupture Length ( LR ), Rupture Width ( WR ), and Moment Magnitude ( WM ) by Fault Type (D. L. 
Wells & Coppersmith, 1994)
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inner-trench regions. The circum-Pacific seismic zone is divided into eight subregions by considering the 
disposition of major subduction zones (Bird, 2003).

The analysis does not account for natural stress release and temporal compensation, such as viscoelastic 
medium response, postseismic slips, slow slips, and slow earthquakes. These factors may additionally affect 
the stress environment (Chan & Stein, 2009; Freed, 2005; Obara & Kato, 2016; Uchida et al., 2016). In this 
study, we assess only the total magnitudes of stresses induced by large earthquakes since 1900.

4.  Analysis of Coulomb Stress Changes
We perform a series of tests to examine the possible variations in the Coulomb stress changes. The Coulomb 
stress changes may vary by implemented source model. We examine the influence of source slip models on 
the induced stress fields.

We consider an event with a known coseismic slip model (the August 15, 2007 WM 8.0 earthquake). We find 
available scaling laws to determine source parameters based on moment magnitudes (Blaser et al., 2010; 
Mai & Beroza, 2000; Strasser et al., 2010; D. L. Wells & Coppersmith, 1994). Each scaling law may have 
own limitation and errors in the assessment of Coulomb stress changes. We compare the Coulomb stress 
changes based on coseismic slip models with those based on the scaling laws (Figure 4). We determine the 
source parameters based on four scaling laws (Blaser et al., 2010; Mai & Beroza, 2000; Strasser et al., 2010; 
D. L. Wells & Coppersmith, 1994). We compare the lateral variations in Coulomb stress changes among 
different source slip models. We find that all the results are similar (Figure 4). The observation suggests 
that the Coulomb stress changes based on homogeneous slip models from scaling laws are close to those 
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Figure 4.  Comparison of Coulomb stress changes induced by the August 15, 2007 WM  8.0 based on different source models: (a) a coseismic slip model, and 
homogeneous slip models from (b) the scaling law of D. L. Wells and Coppersmith (1994), (c) the scaling law of Mai and Beroza (2000), (d) the scaling law of 
Blaser et al. (2010), and (e) the scaling law of Strasser et al. (2010). The Coulomb stress changes are determined similar among the results.
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based on coseismic slip models (Figure 4). Further, the different scaling laws rarely introduce noticeable 
differences in the results.

We additionally consider two other events (the February 27, 2010 WM 8.8 earthquake, the October 25, 2010 
WM 7.8 earthquake) (Figure 5). We implement three types of source slip models that include coseismic slip 

models, homogeneous slip models based on known source dimensions, and homogeneous slip models 
based on the scaling laws. We choose one representative scaling law (D. L. Wells & Coppersmith, 1994) for 
the calculation of Coulomb stress changes of events with unknown coseismic slip models. The observation 
suggests that simplified slip models may be applicable for regional assessment of stress perturbation. Here-
after, we use the scaling laws of D. L. Wells and Coppersmith (1994) for analysis of events with unknown 
source parameters.

The detailed geometry of plate interfaces are not fully known. It is practically useful to consider optimal-
ly oriented faults. However, the orientations of receiver faults may control the induced stress field. We 
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Figure 5.  Coulomb stress changes induced by the February 27, 2010 WM 8.8 earthquake based on (a) a coseismic slip model (Hayes, 2017), (b) a homogeneous 
slip model (Y. N. Lin et al., 2013), and (c) source parameters from empirical relationships (D. L. Wells & Coppersmith, 1994). Coulomb stress changes induced 
by the 25 October WM 7.8 earthquake based on (d) a coseismic slip model (Hayes, 2017), and (e) source parameters from empirical relationships (D. L. Wells & 
Coppersmith, 1994). The estimated Coulomb stress changes are similar among the models.
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examine the optimal-orientations of receiver faults. Also, the Coulomb stress changes are calculated for the 
optimally oriented receiver faults. We find that the orientations of optimally oriented faults are generally 
consistent with the local slab-interface geometries even around triple junctions (Figure 6).

We additionally compare the cumulative Coulomb stress changes for receiver faults in optimal orientations 
with those for receiver faults in given orientations following local tectonic structures (Figures 7a–7c). We 
observe that the overall features in cumulative Coulomb stress changes are similar between the two cases. 
The observations suggest that the Coulomb stress changes for optimally oriented receiver faults may enable 
us to assess the regional induced stress fields reasonably.

We conduct additional tests to examine the validity of the method. We assess the cumulative Coulomb stress 
changes along the Peru-Chile Trench using the proposed method (Figures 8a–8d,). We also calculate the 
cumulative Coulomb stress changes in three selected regions (regions d1, d2, d3) for given receiver-fault ori-
entations that are set to be trench-parallel (Figures 8e–8g). We measure the differences of cumulative Cou-
lomb stress changes between two approaches. The differences are negligibly small compared to the levels 
of cumulative Coulomb stress changes (Figures 8h–8j). The observation suggests that the proposed method 
based on optimal receiver-fault orientations yields reasonable results. Also, the proposed method covers the 
study area in consistent manner, yielding continuous cumulative Coulomb stress changes in regions.

We examine the influence of effective frictional coefficient on the regional induced stress field. We compare 
the cumulative Coulomb stress changes for different effective frictional coefficients ( 0.03  , 0.4) (Fig-
ures 7b and 7d). The regional variations in cumulative Coulomb stress changes are close between the two 
cases. In this study, we implement the effective frictional coefficient of  0.03  .

5.  Cumulative Coulomb Stress Changes
We calculate long-term cumulative Coulomb stress changes induced by 1,636 earthquakes (1,457 earth-
quakes with moment magnitudes WM 7.0, and 179 earthquakes with moment magnitudes WM 6.4–6.9) 
in 1900–2020. The cumulative Coulomb stresses evolve with time due to continuous occurrence of large 
earthquakes. The Coulomb stress changes are calculated for optimally oriented reverse faults around the 
circum-Pacific seismic zone.

Major earthquakes produce lateral heterogeneities in the induced stress fields around active plate margins. 
The cumulative Coulomb stress changes vary between −337.5 and 697.9  bar around the circum-Pacific 
seismic zones (Figure  9). Negative cumulative Coulomb stress changes were generally dominant in the 
subduction zones, suggesting that the loaded stresses were released by precedent nearby earthquakes. Large 
positive cumulative Coulomb stress changes suggest that the static stresses transferred from neighboring 
regions are accumulated without faulting.

Large Coulomb stress changes occur after large earthquakes. Large slip deficits occur in numerous subduc-
tion zones (Graham et al., 2016; Hashimoto et al., 2009; Ikuta et al., 2015; Koyama et al., 2012; Li & Frey-
mueller, 2017; Loveless & Meade, 2010; Pulido et al., 2014; Widiyantoro et al., 2020; Yamazaki et al., 2014). 
We observe large positive cumulative Coulomb stress changes at some interseismic locking zones with large 
slip deficits in subduction zones including the northern and central Peru-Chile Trench in zone 1, Middle 
America Trench in zone 2, Aleutian Trench in zone 4, Nankai Trough, Japan Trench, and Kuril Trench in 
zone 5, Ryukyu Trench in zone 6, New Hebrides Trench, and Kermadec Trench in zone 7, Java Trench in 
zone 8.

The overall cumulative Coulomb stress changes are generally comparable among different subduction 
zones. Great earthquakes dominantly perturb the long-term cumulative Coulomb stress changes (Fig-
ure 10). Comparable levels of cumulative Coulomb stress changes are achieved long after the occurrence of 
large earthquakes. This observation suggests that the stress changes induced by precedent earthquakes may 
be comparable among subduction zones.

We calculate the cumulative Coulomb stress changes for earthquakes with moment magnitudes 7.0WM .  
These large earthquakes dominantly affect the regional stress fields. For comparison, we additionally cal-
culate the cumulative Coulomb stress changes induced by earthquakes with magnitudes 8.0WM  and 
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Figure 6.  Coulomb stress changes induced by single large earthquakes and optimal fault-plane orientations of receiver 
reverse faults: (a) the February 27, 2010 WM 8.8 earthquake in zone 1, (b) the June 23, 2001 WM 8.4 earthquake in zone 
1, (c) the September 19, 1985 WM 8.0 earthquake in zone 2, (d) the September 5, 2012 WM 7.6 earthquake in zone 2, (e) 
the March 28, 1964 WM 9.2 earthquake in zone 4, (f) the March 11, 2011 WM 9.0 earthquake in zone 5, (g) the December 
20, 1946 WM 8.3 earthquake in zone 5, (h) the April 1, 2007 WM 8.2 earthquake in zones 6 and 7, (i) the October 21, 
2011 WM 7.4 earthquake in zone 7, (j) the October 25, 2010 WM 7.8 earthquake in zone 8, (k) the March 28, 2005 WM
8.6 earthquake in zone 8, and (l) the December 26, 2004 WM 9.1 earthquake in zone 8. The focal mechanism solutions 
of a couple of earthquakes are presented for comparison. The optimal fault-plane orientations of receiver reverse faults 
(broken lines) are generally trench-parallel.
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6.5WM  (Figure 11). We observe that the cumulative Coulomb stress changes are mainly controlled by 
large events. The cumulative Coulomb stress changes for earthquakes with magnitudes 6.5WM  are close 
to those for earthquakes with magnitudes 7.0WM . The observation suggests that the cumulative Coulomb 
stress changes for earthquakes with moment magnitudes 7.0WM  may present major stress perturbations.

The faulting mechanisms and stress systems are different between subduction zones and outer-rise regions. 
The stress fields in the outer-rise regions are composed of trench-normal tensions. On the other hand, 
trench-normal compression is active on slab interface. We investigate the seismicity and stress field changes 
on slab interfaces at seismogenic depths where major earthquakes nucleate. We confined the study regions 
along subduction zones (Figure 9).

6.  Correlation With Tectonic Properties
We examine the dependency of the cumulative Coulomb stress changes on tectonic properties such as strain 
rates, heat flows, and thermal parameters (J. H. Davies, 2013; Kreemer et al., 2014; Maunder et al., 2019). We 
sort the cumulative Coulomb stress changes along plate boundaries as a function of strain rates, heat flows, 
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Figure 7.  Comparison of cumulative Coulomb stress changes for different receiver-fault orientations: (a) Map of 
study region and earthquakes, (b) cumulative Coulomb stress changes for optimally oriented thrusts with effective 
frictional coefficient  0.03  , (c) those for thrusts with a given trench-parallel orientation and  0.03  , and (d) 
those for optimally oriented thrusts with  0.4  . The study region is marked on the map (rectangle). The cumulative 
Coulomb stress changes are similar among different cases.
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and thermal parameters. We determine the averages and standard deviations of cumulative Coulomb stress 
changes (Figure 12). The cumulative Coulomb stress changes are observed to be minimally dependent on 
the physical properties (Figure 12).

We find both positive and negative stress changes, but not zero stress changes, at common magnitudes 
of physical parameters. This feature may develop due to spatially inhomogeneous occurrence of major 
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Figure 8.  Comparison of cumulative Coulomb stress changes for three local regions (d1, d2, d3) in zone 1: (a) map of 
local regions and cumulative Coulomb stress changes for optimally oriented thrusts, (b) enlarged views for region d1, 
(c) region d2, and (d) region d3. Cumulative Coulomb stress changes for thrusts with a given trench-parallel orientation 
(e) in region d1, (f) region d2, and (g) region d3. Differences between the cumulative Coulomb stress changes for 
optimally oriented thrusts and those for trench-parallel-oriented thrusts (h) in region d1, (i) region d2, and (j) region d3. 
The cumulative Coulomb stress changes are determined similar between the two cases. The differences of cumulative 
Coulomb stress changes are small.
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earthquakes. The differences between positive and negative cumulative Coulomb stress changes are on the 
order of tenths to tens of bar, producing large lateral heterogeneities in stress fields. The absolute magni-
tudes of peak positive and negative Coulomb stress changes do not exceed 100 bar. This observation sug-
gests that the stress induced from adjacent earthquakes may possibly recover the coseismic stress decreases 
of the faults.

7.  Seismicity Feature in Subduction Zones
Six great earthquakes with moment magnitudes greater than WM 8.5 occurred on the subduction zones from 
2004 to 2012. The long-term cumulative Coulomb stress changes are dominantly controlled by precedent 
great earthquakes that significantly perturb media up to regional distances (Hong et al., 2015; Hong, Lee, Chi, 
et al., 2017). Large earthquakes induce stress decreases (negative Coulomb stress changes) in the fault-rup-
tured regions. It was reported that seismicity increases in elevated-stress regions (Hong et al., 2018, 2020; 
Hong, Lee, Kim, et al., 2017; King et al., 1994; Nalbant et al., 1998; Stein et al., 1997; Toda et al., 2005).

We examine the seismicity dependency on cumulative Coulomb stress changes. We assess the cumulative 
Coulomb stress changes along subduction zones during 1900–2012. The cumulative Coulomb stress chang-
es during 1900–2012 are compared with the seismicity of moderate-size earthquakes with moment magni-
tudes of 4.0–5.0 in the following year, 2013 (Figure 13). We present the moment releases of moderate-size 
earthquakes as a function of Coulomb stress change (Figure 13). The data points are sorted by strain rates, 
heat flows, and thermal parameters of the regions.

We consider only the slab interface regions. We discretize the circum-Pacific seismic zone by cells with a 
uniform size of 3-by-3. One sides of cells are placed on the plate boundary. The other sides are placed in 
inner-trench regions. This configuration of discrete cells enables us to compare various physical properties, 
seismicity, seismic moments with Coulomb stress changes on the slab interface in the inner-trench regions.

The released energy of postseismicity in the stress-increase regions presents negligible apparent correlation 
with the magnitude of induced stress (left column in Figure  13). The magnitude of induced seismicity 
appears to be independent of the strength of induced stress, as long as the induced stress is greater than 
0.01 bar (Figure 13). This observation may indicate the lower bound of induced stress necessary to trigger 
earthquakes, which is consistent with other studies (Helmstetter & Shaw, 2006, 2009).

It is intriguing to note that moderate-size earthquakes occur more commonly in the stress-decrease regions 
than in the stress-increase regions (Figure 13). More earthquakes occur in the regions of greater stress-de-
crease, which is evident according to the perspective of any common physical parameters. This feature 
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Figure 9.  Cumulative Coulomb stress changes induced by 1,636 earthquakes combining 1,457 earthquakes with 
moment magnitudes greater than or equal to WM 7.0 and 179 earthquakes with moment magnitudes WM 6.4–6.9 in 
1900–2020. The Coulomb stress changes were calculated for optimally oriented thrusts. The cumulative Coulomb stress 
changes are laterally heterogeneous along plate boundaries.
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may be attributed to the fact that postseismicity is concentrated in the 
fault-ruptured source regions that accompany coseismic stress drops.

The apparent correlation between the negative cumulative Coulomb 
stress changes and postseismic moderate-size earthquakes may be associ-
ated with the medium weakening after large earthquakes. The frictional 
resistance and yield strength may be decreased by the medium perturba-
tion (Cattin et al., 2009), inducing more earthquakes as a result of post-
seismic medium responses. Viscoelastic relaxation of media after large 
earthquakes may additionally foster the seismicity (Chan & Stein, 2009). 
These observations suggest that the ruptured slab interface may incorpo-
rate more moderate-size earthquakes (Wada et al., 2008).

8.  Large Earthquake Induction
We examine the large-earthquake occurrence with temporal evolution of 
cumulative Coulomb stress change in plate boundaries. We choose large 
earthquakes with moment magnitudes greater than 8.0 from representa-
tive subduction zones. We assess the cumulative Coulomb stress changes 
3 months before the events.

The February 27, 2010 WM 8.8 Maule Chile earthquake occurred in a 
region with a large variation of static stress ranging −3 to 8 bar which 
corresponds to a preseismic locking zone in the Peru-Chile Trench off 
central Chile (Figure 14a). The megathrust earthquake lowered the stat-
ic stress level around the epicentral region that had accumulated since 
the last megathrust event in 1835 (Moreno et al., 2010). The 2010 WM 8.8 
earthquake loaded the stress in the subduction zone of latitude of −36 
to −34. The April 1, 2014 WM 8.1 earthquake occurred in the Peru-Chile 
Trench off northern Chile in a region with large static stress variation 
(Figure 14b). The September 16, 2015 WM 8.3 earthquake occurred in a 
region of localized stress contrasts (Figure 14c). The September 16, 2015 

WM 8.3 earthquake lowered the stress level in the region.

A large lateral variation of static shear stress was observed in the Japan 
Trench off eastern Hokkaido, Japan before the September 25, 2003 WM
8.3 Tokachi-Oki earthquake (Figure  15a). The earthquake lowered the 
elevated-stress level in the region. In addition, a persistent stress contrast 
of 12  bar in the Japan Trench off Tohoku was relieved by the March 11, 
2011 WM 9.0 earthquake (Figure 15b). The earthquake lowered the stress 
level over a wide region along the trench. On the other than, the earth-
quake increased the stress contrasts in the source zone (rupture area). 
The increased stress in the rupture area produced successive aftershocks.

The December 26, 2004 WM 9.1 Sumatra-Andaman earthquake occurred 
in the boundary between the Indo-Australian plate and the Sunda plate 

near northwestern Sumatra, Indonesia. The earthquake occurred in a region with 110 km radius with a 
large spatial variation in cumulative Coulomb stress changes ranging −0.9 to 1.1  bar (Figure  16a). The 
rupture initiated at the location of stress contrast (Figure 16). The earthquake lowered the static stress level 
in the epicenter region, while increasing the static stress level in a region of the Java Trench where a WM
8.6 event occurred 3 months later (Figure 16b). A WM 8.5 event occurred ∼30 months later in a region of 
elevated stress located southeast of the 2004 WM 9.1 earthquake (Figure 16c).

The successive stress transfer from the large events in the subduction zones triggered the April 11, 2012 WM
8.6 strike-slip earthquake (Figure 17a). It is noteworthy that the WM 8.6 earthquake location corresponds 
to a region of large gradient in cumulative stress field (large stress contrast). The WM 8.6 strike-slip event 
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Figure 10.  Temporal evolution of cumulative Coulomb stress changes 
around the (a) Peru-Chile Trench, (b) Kuril and Japan Trenches, and (c) 
Java Trench. The cumulative Coulomb stress changes vary significantly 
after great earthquakes. The occurrence times of large earthquakes are 
marked (stars).
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increased the Coulomb stress on optimally oriented strike-slip faults in the region around the epicenter, 
causing a significant increase of aftershocks (Figure 17b).

The WM 8.6 earthquake triggered the WM 8.2 earthquake 2  h later (Figure  17c). The two large strike-slip 
earthquakes perturbed the stress field around the outer-rise, inducing the seismicity in adjacent regions. 
This observation suggests that stress field perturbation by reverse-faulting earthquakes can induce strike-
slip earthquakes.
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Figure 11.  Distribution of earthquakes with magnitudes of (a) 6.5 7.0WM  , (b) 7.0 8.0WM  , and (c) 8.0WM   in zone 1. The numbers of events 
are indicated. Cumulative Coulomb stress changes induced by earthquakes with moment magnitudes greater than or equal to (d) WM 6.5, (e) WM 7.0, and (f) WM
8.0 in zone 1.
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We examine the lateral variations in induced stress fields of large earth-
quakes. We choose representative subduction zones including Peru-Chile 
Trench (zone 1), Middle America Trench (zone 2), Japan Trench and 
Nankai Trough (zone 5), South Solomon Trench and Tonga Trench (zone 
7), and Java Trench (zone 8) (Figure 18a). There are 22 earthquakes with 
magnitudes 8.0WM  since 2000. Fifteen earthquakes out of 22 earth-
quakes occurred on slab interfaces. The other seven events are deep-fo-
cus earthquakes, outer-trench earthquakes, or intraplate earthquakes. We 
find 15 large subduction-zone earthquakes with magnitudes 8.0WM  
since 2000. We analyze all the 15 large subduction-zone events.

The 15 events include the February 27, 2010 WM 8.8 Maule earthquake 
(event A1), the September 16, 2015 WM 8.3 Illapel earthquake (event A2), 
the April 1, 2014 WM 8.1 Iquique earthquake (event A3), the June 23, 2001 

WM 8.4 Arequipa earthquake (event A4), the August 15, 2007 WM 8.0 Pisco 
earthquake (event A5), the September 8, 2017 WM 8.1 Chiapas earthquake 
(event A6), the March 11, 2011 WM 9.0 earthquake (event B1), the Sep-
tember 25, 2003 WM 8.3 earthquake (event B2), the November 15, 2006 

WM 8.3 Kuril Islands earthquake (event B3), the December 26, 2004 WM
9.1 Sumatra-Andaman earthquake (event C1), the March 28, 2005 WM
8.6 Nias-Simeulue earthquake (event C2), the September 12, 2007 WM 8.5 
Southern Sumatra earthquake (event C3), the December 23, 2004 WM 8.1 
Macquarie Island earthquake (event D1), the May 3, 2006 WM 8.0 Ton-
ga earthquake (event D2), and the April 1, 2007 WM 8.2 Solomon Islands 
earthquake (event D3) (Figure 18).

Earthquakes generally nucleate at point locations, rupturing outward 
from the nucleation locations (hypocenters) along fault planes. We exam-
ine the lateral stress distribution in the hypocentral areas. We measure 
the stress contrasts in source regions by estimating the peak stress dif-
ference along fault planes in the earthquake hypocentral regions with a 
radius of 100 km.

The source region of the February 27, 2010 WM 8.8 Maule earthquake 
presents the peak lateral stress change of 11  bar in the trench-parallel 
direction (Figure 18c). The September 16, 2015 WM 8.3 Illapel earthquake 
present peak lateral stress changes of 34 bar in the trench-parallel direc-
tion (Figure 18d). The source region of the March 11, 2011 WM 9.0 Toho-
ku-Oki earthquake displays the peak lateral stress change of 24 bar in the 
trench-parallel direction (Figure 18i). Similarly, the source region of the 
September 25, 2003 WM 8.3 Tokachi-Oki earthquake present a stress con-
trast as large as 16 bar (Figure 18j). The December 26, 2004 WM 9.1 Su-
matra-Andaman earthquake occurred in a region with peak lateral stress 
change of 2 bar in the trench-parallel direction (Figure 18l). The source 
region of the September 12, 2007 WM 8.5 earthquake displays the peak lat-
eral stress change of 18 bar in the trench-parallel direction (Figure 18n).

We consistently find that the large earthquakes occurred in the regions 
of high stress contrasts. We find that 12 events out of 15 events present 
stress contrasts as large as 7–24 bar in the hypocentral regions before the 

earthquakes (Figure 18b). It is noteworthy that the other three events (events A3, A6, C1) have stress con-
trasts of 1–4 bar due to low seismicity (none to two M7 earthquakes since 1900) before the earthquakes. The 
stress field in the three event regions was little perturbed by adjacent earthquakes for last 120 years.

It is noteworthy that the stress contrasts of several to tens of bars are noticeable magnitudes considering 
the deviatoric stress level in regional stress field (100  bar). A series of large earthquakes may induce 
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Figure 12.  Variation of cumulative Coulomb stress changes ( ( )CFS )  
during 1900–2020 as a function of (a) strain rate, (b) heat flow, and 
(c) thermal parameters. The standard deviations (bars) are presented. 
The cumulative Coulomb stress changes are barely dependent on the 
magnitudes of subduction zone properties.



Geochemistry, Geophysics, Geosystems

noticeable stress perturbations in adjacent regions. Also, the observation may suggest that large earth-
quakes may generally occur in the regions with large lateral gradients in induced stress fields (Figure 18). 
Thus, the stresses transferred from adjacent events may trigger earthquakes successively. This feature is 
observed globally on plate boundaries, regardless of the tectonic properties. Earthquakes for long terms may 
induce heterogeneous local stress field. The large postseismic earthquakes may be substantially affected by 
precedent large earthquakes.

9.  Regional Variation in Induced Stress Fields
We consider eight subregions around the circum-Pacific seismic zone (Figure 2a). The cumulative Cou-
lomb stress changes varied between −337.5 and 333.7 bar in zone 1, between −81.92 and 48.62 bar in zone 
2, between −34.20 and 194.5 bar in zone 4, between −207.3 and 697.9 bar in zone 5, between −41.81 and 
34.08 bar in zone 6, between −96.43 and 96.57 bar in zone 7, and between −180.9 and 649.9 bar in zone 8. 
The cumulative Coulomb stress changes varied between −21.71 and 47.98 bar in the western North Ameri-
can plate (zone 3) for optimally oriented strike-slip faults that were dominant in the region.
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Figure 13.  Total seismic moments ( 0M ) released from moderate-size earthquakes in 2013 as a function of cumulative 
Coulomb stress changes ( ( )CFS ) by precedent earthquakes in 1900–2012 for common (a) strain rate, (b) heat flow, 
and (c) thermal parameters. Comparisons are presented for stress-increase (left column) and stress-decrease (right 
column) regions. Strong linear correlations are observed between seismic moments of postseismicity and cumulative 
Coulomb stress changes in stress-decrease regions due to seismic events during postseismic slips. The correlations are 
relatively weak in stress-increase regions.
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9.1.  Zone 1

Megathrust earthquakes occur frequently along the Peru-Chile Trench, producing large lateral perturba-
tions in stress fields (Figure 19). There are seismic gaps in the northern Peru-Chile Trench at latitudes of 
−10 to −4, and in the central Peru-Chile Trench at latitudes of −23 to −18 (Delouis et al., 2007; Hayes 
et al., 2014; Villegas-Lanza et al., 2016).
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Figure 14.  Temporal evolution of cumulative Coulomb stress changes for optimally oriented reverse faults around the Peru-Chile Trench before and after (a) 
the February 27, 2010 WM 8.8 earthquake, (b) the April 1, 2014 WM 8.1 earthquake, and (c) the September 16, 2015 WM 8.3 earthquake. The cumulative stress 
fields 3 months before (upper column) and after (lower column) the mainshocks are presented. The mainshock locations and calculation periods are denoted. 
The mainshocks primarily occurred in the regions around high stress gradients.
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The 1960 WM 9.5 earthquake and the 2010 WM 8.8 earthquake occurred in this trench. Sixteen earthquakes 
with moment magnitudes M  8.0 occurred in 1900–2020. These great earthquakes generally occurred at 
latitudes between −40 and −10 along the subduction zones. The largest earthquake in 1900–2020, with 
moment magnitude of WM 9.5, occurred in 1960 in this region. Localized high cumulative Coulomb stress 
changes are observed around the subduction zone at latitudes of −18, −23, and −38 (U1-A, U1-B, and 
U1-C in Figure 19). The levels of induced stresses reach 333.7 bar. We observe high lateral stress contrasts 
in the trench-parallel directions around the seismic gaps.

9.2.  Zone 2

A large number of earthquakes occurred along the Middle America Trench where the Cocos plate is con-
vergent with the Caribbean plate and North American plate (Figure 20). The dipping angle of subduction 
plate in the Middle America Trench is 18–32 up to a depth of 50 km, and increases high at deeper depths. 
The relative plate motions cause low-angle reverse-faulting events prevail in the plate boundary at shallow 
depths. The northern plate margin of the Caribbean plate displays a strike-slip motion with respect to the 
North American plate, which may load the stress on the Middle America Trench. A Guerrero seismic gap is 
located in the central Middle America Trench at latitudes of ∼12 (Kostoglodov et al., 1996, 2001).

There were five earthquakes with moment magnitudes 8.0 in 1900–2020 in the region. Most large earth-
quakes with moment magnitudes 7.0 occur along the Middle America plate. The large earthquakes 
produced heterogeneous stress fields over the subduction zone. The 2017 WM 8.2 earthquake loaded the 
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Figure 15.  Temporal evolution of cumulative Coulomb stress changes for optimally oriented reverse faults around the Kuril, Japan and Ryukyu Trenches 
before and after (a) the September 25, 2003 WM 8.3 earthquake and (b) the March 11, 2011 WM 9.0 earthquake. The cumulative stress fields 3 months before 
(left column) and after (right column) the mainshocks are presented. The mainshock locations and calculation periods are denoted. The mainshocks primarily 
occurred in the regions around high stress gradients.
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Figure 16.  Temporal evolution of cumulative changes of Coulomb stress changes for optimally oriented reverse faults around the Java Trench before and after 
(a) the December 26, 2004 WM 9.1 earthquake, (b) the March 28, 2005 WM 8.6 earthquake, and (c) the September 12, 2007 WM 8.5 earthquake. The cumulative 
stress fields before (left column) and after (right column) the mainshocks are presented. The mainshock locations and calculation periods are denoted. The 
mainshocks primarily occurred in the regions around high stress gradients.
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Figure 17.  Temporal evolution of cumulative Coulomb stress changes for optimally oriented strike-slip faults in the northern Sumatra region: Cumulative 
Coulomb stress changes (a) before and (b) after the April 11, 2012 WM 8.6 earthquake (first event), and (c) after the April 11, 2012 WM 8.2 earthquake (second 
event). The second event ( WM 8.2) occurred within 2 h after the first event ( WM 8.6). The seismicity is denoted by dots. The seismicity increased in the regions of 
positive Coulomb stress changes.
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Figure 18.
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stress around the source region. No earthquake with moment magnitude greater than 8.0 has occurred 
in the Guerrero seismic gap since the 1845 WM 8.3 earthquake. We observe large lateral stress contrasts in 
trench-parallel directions at both ends of the Guerrero seismic gap (Figure 20).

9.3.  Zone 3

The Pacific plate presents strike-slip motions with respect to the North American plate (Figure 21). Strike-
slip earthquakes are dominant along the plate boundary. The Juan de Fuca plate subducts beneath the 
North American plate. Moderate-size reverse-faulting earthquakes occur in the Cascadia subduction zone 
between North American plate and Juan de Fuca plate. Most earthquakes with moment magnitudes 7.0 
occur along the boundaries between the Pacific plate and the North American plate. Strike-slip events occur 
dominantly along the plate boundary.

Some strike-slip events occur along the transform faults between the Juan de Fuca plate and the Pacific 
plate. We add 13 earthquakes with moment magnitudes greater than or equal to WM 6.4 since 1976 for calcu-
lation of induced stress fields around the Juan de Fuca plate. The stress induced by the large earthquakes is 
dominant along the boundary between the Pacific plate and the North American plate, where reverse faults 
are not present (Figure 21).
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Figure 18.  Lateral variation in cumulative Coulomb stress changes 3 months before great earthquakes. (a) Map of 15 earthquakes with magnitudes 8.0 since 
2000, (b) summary plot of peak-to-peak cumulative Coulomb stress changes in the source regions of the earthquakes, and directional cumulative Coulomb 
stress change variations of each event: (c) the February 27, 2010 WM 8.8 Maule earthquake (event A1), (d) the September 16, 2015 WM 8.3 Illapel earthquake 
(event A2), (e) the April 1, 2014 WM 8.1 Iquique earthquake (event A3), (f) the June 23, 2001 WM 8.4 Arequipa earthquake (event A4), (g) the August 15, 2007 

WM 8.0 Pisco earthquake (event A5), (h) the September 8, 2017 WM 8.1 Chiapas earthquake (event A6), (i) the March 11, 2011 WM 9.0 earthquake (event B1), (j) 
the September 25, 2003 WM 8.3 earthquake (event B2), (k) the November 15, 2006 WM 8.3 Kuril Islands earthquake (event B3), (l) the December 26, 2004 WM 9.1 
Sumatra-Andaman earthquake (event C1), (m) the March 28, 2005 WM 8.6 Nias-Simeulue earthquake (event C2), (n) the September 12, 2007 WM 8.5 Southern 
Sumatra earthquake (event C3), (o) the December 23, 2004 WM 8.1 Macquarie Island earthquake (event D1), (p) the May 3, 2006 WM 8.0 Tonga earthquake 
(event D2), and (q) the April 1, 2007 WM 8.2 Solomon Islands earthquake (event D3). The cross section lines of induced stress fields are indicated on the map 
and diagrams. The large earthquakes occurred in the regions with high gradients in induced stress fields. The stress contrasts presented in the summary plot are 
measured for the shaded ranges in the directional cumulative Coulomb stress change variations.

Figure 19.  Cumulative Coulomb stress changes around the Peru-Chile Trench (zone 1) for optimally oriented reverse 
faults in 1900–2020: (a) map of major earthquakes and (b) induced stress fields. Major instrumental (black circles) 
earthquakes and historically large earthquakes (magenta circles) are presented.
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We calculate the cumulative Coulomb stress changes with consideration of optimally oriented strike-slip 
faults for the western North American plate. The seismicity is dominant at depths 4–20 km. We calculate 
the cumulative Coulomb stress changes for two representative depths of 10 and 30 km considering the seis-
mogenic depths in zone 3 and the other zones (Figure 21).

We observe localized large Coulomb stress changes for optimally oriented strike-slip faults in several re-
gions along the plate boundary at latitudes of 30, 35, and 40 (regions U3-A, U3-B, and U3-C in Figure 21). 
Stress transfers from the subduction zone to strike-slip faults are observed in the region, suggesting the 
interaction between thrusts in the subduction zone and intraplate strike-slip faults (J. Lin & Stein, 2004).

9.4.  Zone 4

The Pacific plate collides with the North American plate in the Aleutian Trench (Figure 22). The 1964 WM
9.2 earthquake occurred in this region. Five earthquakes with moment magnitudes 8.0 occurred since 
1900. The earthquakes with moment magnitudes 7.0 are distributed homogeneously over the subduction 
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Figure 20.  Cumulative Coulomb stress changes around the Middle America Trench (zone 2) for optimally oriented 
reverse faults in 1900–2020: (a) map of major earthquakes and (b) induced stress field. Major instrumental (black 
circles) earthquakes and historical large earthquakes (magenta circles) are presented.
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Figure 21.  Cumulative Coulomb stress changes around the Cascadia Subduction Zone (zone 3) in 1900–2020: (a) map 
of major earthquakes, and induced stress fields for (b) optimally oriented strike-slip faults at depths of (b) 10 km and (c) 
30 km. Major instrumental (black circles) earthquakes and historical large earthquakes (magenta circles) are presented.
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zone. Strong negative Coulomb stress changes are observed in the source region of the 1964 WM 9.2 earth-
quake (Wei et al., 2012).

We find regions of localized stress contrasts along the subduction zones, including the locations at longi-
tudes of −172, −168, −165, −162, and −158 (U4-A, U4-B, U4-C, U4-D, and U4-E in Figure 22). In par-
ticular, we observed high stress induction at the western and eastern margins of the 1964 WM 9.2 earthquake 
source zone. The Shumagin seismic gap is located in the eastern Aleutian Trench at longitude of −161 (J. 
Davies et al., 1981; Wyss & Wiemer, 1999). The Shumagin seismic gap is within the stress shadow. We find 
high induced stresses at both ends of the seismic gap (Figure 22).

9.5.  Zone 5

The Pacific plate and Philippine Sea plate collide with the Okhotsk plate and Eurasian plate around the east 
coast of the Japanese islands (Figure 23). There have been many earthquakes along the subduction zones 
off the Japanese islands. Twenty one earthquakes with moment magnitudes 8.0 occurred along the sub-
duction zones including the Kuril Trench, Japan Trench, Nankai Trough, and Ryukyu Trench since 1900. 
Large earthquakes over the previous 100 years lowered the stress levels over most regions along the Japan 
Trench and Nankai Trough. There are seismic gaps in the eastern Nankai Trough, northern Kuril Trench, 
and western Aleutian Trench, such as the Commander gap and Tokai gap (Chebrov et al., 2019; Geller, 2011; 
MacInnes et al., 2016) (Figure 23).

The September 25, 2003 WM 8.3 earthquake and the March 11, 2011 WM 9.0 earthquake relieved strong stress 
contrasts in the Japan Trench. We, however, observe elevated stresses in the Tokai region of Nankai Trough, 
where large slip deficits are present (Hok et al., 2011). We find a localized stress increase in regions around 
latitudes of 152, 159, and 165 in the Kuril Trench (U5-A, U5-B, and U5-C in Figure  23). We observe 
increased cumulative stress in the western Aleutian Trench. Additionally, Coulomb stress increases are 
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Figure 22.  Cumulative Coulomb stress changes around the Aleutian Trench (zone 4) for optimally oriented reverse 
faults in 1900–2020: (a) map of major earthquakes and (b) induced stress fields. Major instrumental (black circles) 
earthquakes and historically large earthquakes (magenta circles) are presented.
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observed in wide regions over the Ryukyu and Mariana Trenches, thus constructing weak lateral stress 
contrasts (Figure 23).

9.6.  Zone 6

The Philippine Sea plate collides with the northwestern Eurasian plate at the Ryukyu Trench, and with 
the western Sunda plate at the Philippine Trench. The Pacific plate subducts beneath the Philippine Sea 
plate in the Mariana Trench (Figure 24). Fifteen earthquakes with moment magnitudes 8.0 occurred in 
the subduction zones since 1900. There is a central seismic gap at the latitude of ∼15 (Ramos et al., 2005).

Large earthquakes produced large lateral perturbation in stress fields around the margins of the Philip-
pine Sea plate (Figure 24). We observe large stress contrasts for a few earthquakes in a region of latitudes 
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Figure 23.  Cumulative Coulomb stress changes around the Kuril, Japan, and Ryukyu Trenches (zone 5) for optimally 
oriented reverse faults in 1900–2020: (a) map of major earthquakes and (b) induced stress fields. Major instrumental 
(black circles) earthquakes and historically large earthquakes (magenta circles) are presented.
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between 15 and 23 (U6-A and U6-B in Figure 24). The cumulative Coulomb stress changes vary smoothly 
in the northern Mariana Trench (Figure 24).

9.7.  Zone 7

Large earthquakes occurred frequently around the Tonga Trench, New Hebrides Trench, South Solomon 
Trench, and New Britain Trench (Figure  25). Seventeen earthquakes with moment magnitudes 8.0 
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Figure 24.  Cumulative Coulomb stress changes around the Izu-Bonin, Mariana, and Philippine Trenches (zone 6) 
for optimally oriented reverse faults in 1900–2020: (a) map of major earthquakes and (b) induced stress fields. Major 
instrumental (black circles) earthquakes and historically large earthquakes (magenta circles) are presented.
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occurred along the plate boundaries in 1900–2020. There are seismic gaps in the central and northern Ker-
madec Trench in the latitudes between −42 and −32 and between −26 and −24 (Bonnardot et al., 2007) 
(Figure 25).

The source mechanisms are complex in the Tonga Trench. The earthquakes produced complex lateral per-
turbations in the stress field (Figure 25). We observe high stress contrasts in the South Solomon Trench, 
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Figure 25.  Cumulative Coulomb stress changes around the South Solomon, New Hebrides, Tonga, and Kermadec 
Trenches (zone 7) for optimally oriented reverse faults in 1900–2020: (a) map of major earthquakes and (b) induced 
stress fields. Major instrumental (black circles) earthquakes and historically large earthquakes (magenta circles) are 
presented.
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New Hebrides Trench, and Kermadec Trench. We observe strong lateral heterogeneities in the induced 
stress field in the seismic gap of the northern Kermadec Trench.

9.8.  Zone 8

Large earthquakes occurred frequently along the Java and Philippine Trenches (Figure 26). Reverse-fault-
ing earthquakes occur in the subduction zones. There are seismic gaps along the Java Trench (Ely & San-
diford, 2010; Mignan et al., 2006; Philibosian et al., 2017). Twelve earthquakes with moment magnitudes 
8.0 occurred along the subduction zones in 1900–2020. The 2004 WM 9.1 Sumatra-Andaman earthquake 
lowered the static stress level in the epicenter region, while increasing the static stress level in a region of 
the Java Trench, where a WM 8.6 event occurred 3 months later. A WM 8.5 event occurred ∼30 months later 
in a region to the southeast, where the stress level was elevated.

Large strike-slip events occur in the outer rise in the Java Trench near Sumatra. Two large strike-slip 
earthquakes with moment magnitudes of WM 8.6 and WM 8.2 consecutively occurred in April 11, 2012. The 

WM 8.6 strike-slip event triggered earthquakes globally (Pollitz et al., 2012). The December 26, 2004 WM
9.1 earthquake, the March 28, 2005 WM 8.6 earthquake, and the September 12, 2007 WM 8.5 earthquakes in 
the subduction zone caused local stress perturbation with stress contrasts of 9.75 bar in the source region 
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Figure 26.  Cumulative Coulomb stress changes around the Java Trench (zone 8) for optimally oriented reverse 
faults in 1900–2020: (a) map of major earthquakes and (b) induced stress fields. Major instrumental (black circles) 
earthquakes and historically large earthquakes (magenta circles) are presented.
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of the April 11, 2012 WM 8.6 earthquake (Figure 17). The April 11, 2012 WM 8.6 strike-slip earthquake oc-
curred at a region of large gradient in cumulative stress field (large stress contrast). Thus, the occurrence 
of the WM 8.6 strike-slip event may be a consequence of regional stress field perturbation after consecu-
tive great earthquakes in the subduction zone. This feature supports the stress transfer and interaction 
between interplate and intraplate regions among different types of faults (Ammon et al., 2008; ten Brink 
& Lin, 2004).

The two consecutive large strike-slip earthquakes with moment magnitudes of WM 8.6 and WM 8.2 occurred 
in a region of large stress contrast between positive and negative Coulomb stress changes (Figure 17). The 
two large strike-slip earthquakes loaded the stress around the epicentral region. A large number of earth-
quakes followed the great strike-slip events. The spatial distribution of earthquakes is correlated with the 
Coulomb stress changes. The two large strike-slip events significantly perturbed the stress field, accompa-
nying successive aftershocks (Figure 17). We find localized concentration of high Coulomb stress changes 
along the southern Java Trench at longitudes between 102 and 122 (U8-A, U8-B, U8-C, U8-D, and U8-E 
in Figure 26).

10.  Discussion and Conclusions
The occurrence of great earthquakes may be dependent on various parameters including slab geometry, ther-
mal parameters, sediment thickness, strain rate, pore pressure, asperity, and slow slips (Araki et al., 2017; 
Chapman & Melbourne, 2009; Hippchen & Hyndman, 2008; Keiding et al., 2009; Perfettini & Avouac, 2004; 
Saffer et al., 2000; Schwartz & Rokosky, 2007; Townend & Zoback, 2006; Uchida et al., 2016; R. E. Wells & 
Blakely, 2003; Yokota et al., 2016). The stress field, which controls the timing of earthquake occurrence, is 
not stationary.

We investigated the cumulative Coulomb stress changes at a depth of 30 km for optimally oriented re-
verse faults induced by earthquakes with moment magnitudes 7.0 since 1900. The considered depth 
is a representative depth of large earthquakes in convergent plate boundaries. For the western North 
American plate region (zone 3), we assessed the cumulative Coulomb stress changes at depths of 10 and 
30 km for optimally oriented strike-slip faults considering the plate boundary environment and seismic-
ity features.

We assessed the cumulative amount of induced stress fields without consideration of stress recovery with 
time. The analysis did not include the stress field changes induced by postseismic slips, viscoelastic medi-
um responses, and slow slips, which may be critical for the stress field. We investigated possible effects of 
induced stress on the occurrence of next earthquakes.

We have 120-year-long instrumentally recorded earthquake. We assess the amounts of stress induced by 
precedent earthquakes for 120 years. The presented cumulative stress changes represent the component 
of coseismic stress transfer from neighboring earthquakes. The analysis is useful to quantify the upper and 
lower bounds of induced stresses from neighboring earthquakes. Also, this study provides a reference to 
examine the influence of induced stress on seismicity.

We observed complex induced stress fields over plate boundaries. Large earthquakes dominantly perturbed 
the stress fields around plate boundaries. The cumulative Coulomb stress changes changed with time, 
evolving in complex appearance. We observed laterally heterogeneous stress fields along most plate bounda-
ries. The stress contrasts varied from tens to hundreds of bar. The tectonic-loading stress may be the primary 
source of the static stress field that is spatially homogeneous and continuous. We observed that the cumula-
tive stresses induced by precedent earthquakes are spatially inhomogeneous and localized. The magnitudes 
of tectonic-loading stresses are hundreds of times larger than those of induced stresses (Kato, 2012; King 
et al., 1994; Lamb, 2005; Toda et al., 2012; Yagi & Fukahata, 2011).

The coseismic stress decreases are on the order of tens to hundreds of bar (Hasegawa, 2017; Stein et al., 1997), 
nearly equivalent to the levels of peak cumulative induced stresses. This observation suggests that the stress 
induced from neighboring earthquakes for 120 years is sufficient for recovery of coseismic stress decreases. 
The induced stress constructs a laterally heterogeneous stress field.
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Great earthquakes occurred in regions with large lateral variations in Coulomb stress changes. The re-
gions display stress contrasts of 2.5–30  bar. Additionally, the epicenters of great earthquakes such as 
the 2003 WM 8.3 Tokachi-Oki earthquake, the 2011 WM 9.0 Tohoku-Oki earthquake, and the 2010 WM 8.8 
Maule earthquake generally correspond to the regions of large slip deficits (Hashimoto et al., 2009; More-
no et al., 2010; Suwa et al., 2006). Thus, laterally heterogeneous stress transfer triggers the earthquakes 
in regions of high static stress. This feature agrees with laboratory experiments (Langenbruch & Shap-
iro, 2015; Okazaki & Hirth, 2016). The observation suggests that the laterally heterogeneous stress field 
causes instability to induce earthquake occurrence. As the magnitudes of lateral perturbations increase, 
the instability may increase. Thus, the earthquake occurrence may be highly affected by the heterogeneity 
in stress field.

It is known that earthquakes can be induced at stress-increase regions (King et  al.,  1994; Nalbant 
et  al.,  1998; Stein et  al.,  1997; Toda et  al.,  2005). Also, long-term accumulation of induced stress may 
cause earthquake occurrence, which is particularly effective in regions of laterally heterogeneous stress 
fields. High accumulation of stress may pertain to high probability of earthquake occurrence. The high 
stress accumulation can be similarly achieved by a situation in which neighboring regions have relatively 
low stress levels.

In this study, it is not argued the induced stress from precedent earthquakes is the only controlling factor to 
produce earthquakes. We rather suggest that the earthquake occurrence can be fostered by stress perturba-
tion from precedent earthquakes. We observed that stress-contrast regions may be subject to accommodate 
large earthquakes. This study suggests that the stress field induced from precedent earthquakes may be 
linked with large earthquakes.

We observed large stress contrasts at some interseismic locking zones with large slip deficits, including 
the northern and central Peru-Chile Trench in zone 1 around (78W, 12S), (75W, 15S), and (71W, 21S), 
Middle America Trench in zone 2 around (97W, 16S), (99W, 17S), and (101W, 18S), Aleutian Trench in 
zone 4 around (155W, 56N), (164W, 52N), (178W, 52N), (172.5E, 52.5N), Nankai Trough, Japan Trench, 
and Kuril Trench in zone 5 around (133E, 32.5N), (135.5E, 33N), (143E, 41N), and (146E, 43N), Ryukyu 
Trench in zone 6 around (130E, 27.5N), and (124E, 24N), New Hebrides Trench, and Kermadec Trench 
in zone 7 around (167E, 15S), (174W, 22S), and (178E, 39S), Java Trench in zone 8 around (103E, 6S) 
and (113E, 10S).

The spatiotemporal distributions of the stress fields may control the occurrence of great earthquakes. The 
occurrence timing of large earthquakes may be dependent on medium conditions as well as static stress 
level and induced stress changes. The potential locations of large earthquakes can be determined from the 
lateral variations of the stress field. The 120-year-long induced stress may provide a reference to identify the 
potential locations of ensuing large earthquakes. Further, composite analysis of seismic gaps and lateral 
stress-field variations may suggest the potential locations of large earthquakes.

Data Availability Statement
The data and results of this study are available on Dryad (https://doi.org/10.5061/dryad.zkh1893b1).
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