Earth and Space Science

RESEARCH ARTICLE
10.1029/2022EA002464

Key Points:
- Reflection seismic imaging of fault systems in Seoul metropolitan area
- Suggested dependency of the regional seismicity from Chungaryeong fault system
- Deep geometry reconstruction of three regional fault systems

Supporting Information:
Supporting Information may be found in the online version of this article.

Correspondence to:
S. Zappalá and T.-K. Hong, samuel.zappala@geo.uu.se; tkhong@yonsei.ac.kr

Citation:

Received 14 JUN 2022
Accepted 2 SEP 2022

Author Contributions:
Conceptualization: Samuel Zappalá, Alireza Malehmir, Junhyung Lee, Bojan Brodic, Seongjun Park, Dongchan Chung, Byeongwoo Kim, Jeongin Lee
Data curation: Samuel Zappalá, Junhyung Lee
Formal analysis: Samuel Zappalá, Tae-Kyung Hong, Christopher Juhlin
Funding acquisition: Tae-Kyung Hong
Methodology: Samuel Zappalá, Christopher Juhlin, Myrto Papadopoulou
Project Administration: Alireza Malehmir, Tae-Kyung Hong
Software: Samuel Zappalá, Myrto Papadopoulou
Supervision: Alireza Malehmir

© 2022 The Authors.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Plain Language Summary
An approximately 40-km long high-resolution reflection seismic profile (P3) was acquired in the metropolitan area of Seoul in South Korea for the purpose of fault system imaging in a highly noisy and challenging urban environment. Two 12t seismic vibrators (mini-vibs) were used as the seismic source. Data were recorded using a dual element seismic spread; 20 m spaced 421 wireless seismic recorders connected to 10 Hz geophones and 20 micro-electro-mechanical-based landstreamer sensors (2 m sensor spacing) attached to one of the vibrators. The purpose of the dual spread employed was to delineate both near-surface and deep structures. The processing results show good quality and the processing work was complemented by different analysis to further constraints the geological interpretation. The survey results provide evidence for the 3D geometry of three fault systems, including Chungaryeong, Pocheon, and Wangsukcheon faults. A gently westerly dipping set of reflectivity underlying a dome-shaped package of reflectivity is interpreted as a fault, and could project to the known surface position of the Pocheon fault. The dome-shaped reflectivity is interpreted as folded and faulted dyke or sill systems. Downward continuation of the interpreted fault intersects the sub-vertical Chungaryeong fault in a zone where the current seismicity is observed, suggesting that these two major fault systems may have jointly evolved in the form of splay faults. Reflections from the Wangsukcheon fault are also present in the data and interpreted to dip approximately 60° to the east, in an opposite direction to the two other faults.

1. Introduction
The Korean Peninsula is an important tectonic link between eastern China and the Japanese islands (Figure 1). Comprised mainly of deformed basement rocks (granitic intrusions and volcanic rocks, and high-grade gneiss and schist, ranging in age from 1.1 to 2.7 Ga), the Korean crust has experienced a long deformation history. The peninsula has until recently been in a stable intraplate seismic state, although major earthquakes are known from historical recordings (hard copies and drawings), occurring both on the southern part and close to metropolitan Seoul (Lee & Yang, 2006; Park et al., 2020). After the 2011 Tohoku-Oki mega-thrust M_w 9.0 earthquake in Japan, several plus M_w 5.0 earthquakes have been recorded in the peninsula. The 2011 mega-thrust perturbed the Korean crust resulting in coseismic displacements of \sim2–4 cm around the east and west coasts of the peninsula and is likely responsible for the subsequent increased seismic activity in the country (Hong et al., 2017). In 2016,
the largest event, the Gyeongju $M_s 5.4$ earthquake (ML 5.8), recorded in the recent history of modern seismic monitoring in South Korea occurred.

Metropolitan Seoul is densely populated and is home to over 20 million inhabitants; a strong earthquake in the city can be devastating. For preparedness and public safety purposes, it is essential to investigate potentially active fault systems, their structures, geometries and triggering mechanisms. This can help to estimate potential damages, magnitudes and places where reinforcements are necessary for infrastructure and housing (Rosenblueth & Ordaz, 1990; Singh et al., 1980; Wells & Coppersmith, 1994). The need to investigate subsurface structures below major cities is a common problem since many mega-cities are in high geo-hazard risk regions. However, these environments are typically noisy (both electric/electromagnetic and ambient seismic noise) and with logistical challenges, making many geophysical investigations difficult to impossible. Nonetheless, different methods have been attempted, including drilling as one example (Zoback et al., 2010). Geophysical methods, especially seismic ones, can be a method of choice although ambient vibrational noise and ground-receiver coupling are major challenges in mega-cities (Ishiyama et al., 2016; Malehmir et al., 2011; Sato et al., 2009). Despite these problems, different studies show that adopting solutions specifically developed for high-resolution imaging in urban settings can bring important results via high-quality imaging of the subsurface structures, also helping to delineate fault systems at depth that may be important for understanding geo-hazards and for preparedness purposes (Brodic et al., 2015; Ishiyama et al., 2016; Malehmir et al., 2015, 2016, 2017, 2022; Sato et al., 2009).

To evaluate the feasibility, and develop specific strategies, for high-resolution seismic imaging of geo-hazards in mega-cities, two novel active-source reflection seismic profiles (P1 and P2) were acquired in November 2020 in the central and wider metropolitan area of Seoul in South Korea. The survey aimed at showing a spatial relationship between the Chugaryeong fault system (one of the crustal-scale fault systems crossing the entire peninsula and active until the Quaternary) and the recorded seismicity in the last 10 years (Hong et al., 2018, 2021). Recent studies suggest that the Chugaryeong fault is near-vertical and still active showing a dominant strike-slip mechanism from focal mechanism solutions (Hong et al., 2018, 2021). The Pocheon and Wangsukcheon faults, mapped east of the Chugaryeong fault, appear to form splay faults as they approach each other in the city (Figure 1). Other smaller faults are also expected between these three major crustal fault systems although with poor or no surface exposures. P1 was located on the northern side of metropolitan Seoul while P2 was positioned in the central part of the city where the Chugaryeong fault intersects a cluster of seismicity. Given the encouraging results from the 2020 survey, especially along P1 where reflections down to 8–9 km depth were imaged and showed both spatial and temporal correlation with the clustered seismicity (Malehmir et al., 2022), a new survey was justified to shed light on the overall subsurface geometry of the three major fault systems. In July 2021, a new seismic profile (P3), approximately 40 km, was acquired (Figure 1). It was positioned between P1 and P2 on the northern outskirts of metropolitan Seoul where it was logistically possible to acquire the new profile. P3 intersects all the three major fault systems, Chugaryeong, Pocheon, and Wangsukcheon, and marks the longest single profile ever recorded in South Korea. The main goals of this study are (a) establish a depth relationship of the three major faults for the first time, (b) reconstruct fault geometries and intersections, and (c) investigate correlation between reflections and the recorded seismicity in the region. We demonstrate that the new profile allows 3D positioning of these fault systems and speculate on a fault-bend fold structure suggesting a reverse movement component along it. Some of the recorded seismicity may also occur at the intersection of the Chugaryeong fault with other major faults.

2. Seismicity and Geology of the Korean Peninsula

The Korean peninsula can generally be characterized by three major Paleoproterozoic massifs (lithotectonic domains), Nangrim, Gyeonggi, and Yongnam, separated by the Imjingang and Ogcheon belts (Chough et al., 2000). The new reflection seismic profile P3 was acquired on the northwestern margin of the Gyeonggi massif crossing different lithologies and the previously discussed faults.

The Gyeonggi massif in the central part of the peninsula is comprised of granitic, gneissic, and basaltic rocks. Geological units range from Paleoproterozoic to Cretaceous except for the basaltic and fluvial deposits that are of Quaternary age. These rocks are crosscut by major fault systems from Paleozoic to Quaternary (Bae & Lee, 2016; Choi et al., 2012). The most represented lithologies are granite, gneiss, and schist, with also the occurrence of basalts, metasediments and dykes. The area shows evidences of four main deformation phases. The first one is related to N-S compression in Late Permian-Early Triassic, followed by a N-S extensional phase in Middle-Late
Triassic that resulted in ductile shear and normal faulting. In Middle-Late Jurassic a NNW-SSE compression caused NW-dipping thrust systems. The last phase is characterized by N-S to NNE-SSW right strike-slip faults associated with NNW-SSE folds and to the formation of different Cretaceous basins. The three fault systems (Figure 2) that are the focus of this seismic survey are related to the last deformation phase, which show evidence of activity during the Quaternary and that are possibly still active (KIGAM, 2008). Recent studies show the occurrence of seismic clusters close to the main faults, especially to the Chugaryeong fault, suggesting that they are in some way controlled by the current stress field (Hong et al., 2021). During the last decades, several projects have studied these faults, working on their ages, kinematics and geometries, using trenches when possible (i.e., Han & Lee, 2019 and references therein). Results of these studies suggest high dipping angles for all the faults with the Chugaryeong fault considered to be sub-vertical, Pocheon WNW dipping and Wangsukcheon ESE dipping (Han & Lee, 2019). The main limitation for these studies is the poor exposure of these faults on the surface. Therefore, most of the mapped faults are reconstructed following lithological boundaries and morphological valleys, with real information limited only to small areas. The entire area is geothermally active, as can be seen by the occurrence of different natural hot springs in the area (Lee et al., 2010).

3. Seismic Data Acquisition

Data acquisition along P3 was carried out from the second half of July to the beginning of August 2021 and took approximately 25 days, including line setup, recording and downloading data from wireless recorders (data harvesting). The length of the profile and the environmental factors required active updating of the profile geometry during the acquisition to reach an optimal setup configuration for fold and offset coverage (Figure 2).

Along the entire profile length, a dual-element seismic spread consisting of wireless seismic recorders connected to 10 Hz vertical geophones and a micro-electro-mechanical (MEMS-based) landstreamer was used to acquire the data with the aim of imaging both near-surface and deeper structures. This setup was also used during the acquisition of profiles P1 and P2 (Malehmir et al., 2022). The wireless recorders (total of 421) were used in an asymmetric split-spread roll-along acquisition geometry to cover the entire profile length, with an active spread of 7.4 km. To provide a regular fold and offset coverage, and plan receiver deployment, different scenarios were evaluated for in what order the receivers should be picked up. Twenty landstreamer mounted MEMS-based recorders (2 m sensor spacing) were towed behind one of the two seismic vibrators used as a seismic source for
the survey. The streamer data provided active quality control and GPS time stamping of shot records. The two seismic vibrators (Innova 9t Mini-vibs—UV2) were equipped with an additional weight of 3,000 kg to improve ground coupling and operated in a clock-phase synchronized mode to avoid distortion and anti-phase vibration. At every source point, the vibrators (each approximately 7 m long) were positioned with the actual shot position assigned in between the two vibrators, collocated with wireless receivers. Sweeps at both vibrators were simultaneously initiated with initiation of recording of the streamer data and we treat the excited seismic energy as a single source point. To improve the S/N ratio, four sweeps per shot location were generated with the sweep parameters.

With 1,961 wireless recorder positions, 17,546 landstreamer recorder positions and a receiver spacing of 20 and 2 m respectively, approximately 40 km of high-resolution seismic data were acquired. The nominal shot spacing achieved was 20 m with a total of 1,887 positions. Due to a technical problem, landstreamer recorders were not used during one day of the acquisition, hence they contain only 1,736 shot positions. A GPS antenna was used for time-tagging and sampling of the landstreamer data. The time stamps were later used to harvest the corresponding data from the wireless recorders that were autonomously recording during the acquisition. Details of the survey parameters and the acquisition strategy used can be found in Table 1. All wireless receiver positions were accurately surveyed using a cm accuracy DGPS system.

Figure 2. (a) Seismic profile P3 shown in red with a total length of approximately 40 km was acquired in summer 2021. In blue the common midpoint line used to process the data. (b) Geological map of the study area; dashed lines are mapped faults close to the profile. Seismicity of the area is also shown. Gray circles have no focal depth solutions.
4. Seismic Data Analysis

4.1. Reflection Data Processing

The overall quality of the data is reasonable given the high noise level background in the region, with a CMP fold coverage between 180 and 220 and a maximum offset of ca. 7 km. The highest quality data were registered on the eastern and in the central part of the profile with numerous shot and receiver gathers exhibiting clear reflectivity and first breaks up to maximum offsets (Figure 3). The western parts of the profile show noisier data due to line position close to a big city and major roads. Generally, reflections are more continuous on some receiver gathers, showing that geophone-ground coupling in the city environment is key to acquiring quality data. For this reason, when possible, processing steps were carried out on receiver gathers. An interesting phenomenon of this data set is the strong presence of back-scattering of surface-waves in some parts of the profile (Figure 4). Given their clear locations, they are used in this study to complement the interpretation of imaging results.

Landstreamer and wireless data were processed separately and merged after stack using a similar procedure as described by Malehmir et al. (2022). Landstreamer data were handled with a straightforward processing scheme with the aim of imaging the top of the bedrock. The streamer processing is largely based on building a velocity model for the NMO corrections and maintaining higher frequencies. In contrast, the wireless recorder data processing required carefully selected processing steps and parameters due to deeper targets and a lower S/N ratio.

Four seconds of wireless recorder data were processed. First-break picking was the most time-consuming step, however rewarding as the refraction static correction step was crucial for improved imaging. Other important steps were trace editing, median filters, and velocity analysis coupled with surface-consistent residual static corrections. For stacking purposes, a slalom CMP line was positioned following the centers of midpoint distributions; an identical CMP geometry was also used for the landstreamer data to enable merging of the two data sets. After stack, phase-shift migration was applied and data were time-to-depth converted using a constant velocity of 6,000 m/s. Table 2 shows the key reflection seismic processing steps applied to the data.
4.2. First-Break Traveltime Tomography

A first-break traveltime tomography model was computed using the picked first breaks for the refraction static corrections using a diving-wave finite-difference based code (Tryggvason et al., 2002). Although the code calculates ray paths and traveltimes in 3D space, the model was forced to be 2D by taking a large cell size perpendicular to the profile. The starting model was set to take into consideration the topography. After considering the characteristics of the picked first-breaks and some tests with different starting models, a model that uses 1,000 m/s below the topography with a velocity gradient reaching 5,500 m/s at 100 m depth was chosen. A 10 by 10 m cell size in inline and depth directions were adopted for the computation. After eight iterations the resulting RMS value was 4.011 ms.

5. Results and Interpretation

The unmigrated stacked section obtained from the landstreamer data (Figure 5a) is focused on the bedrock reflection. The reflection can be mapped in high resolution and has good lateral continuity. Some areas, especially on the western side of the profile where the main city is located, show a less clear bedrock reflection. The weathering layer thickness appears to be less than 50 m, with the top of the bedrock at most places close to the surface. The bedrock mostly shows a rough surface morphology characterized by steps that could represent fault
displacements or partial erosional surfaces (Figure 5a). As the bedrock reflection is relatively shallow there was no attempt to migrate these data (Black et al., 1994).

The first-break traveltime tomography of the wireless data and the landstreamer reflection results show good correspondences, suggesting a good correspondence between the two processing methods. The tomography results show a good-quality image along the whole profile, also close to the main city as the short offsets are better picked than at far offsets on the wireless recorders. As for the landstreamer section, the weathering layer (with a velocity of about 1,300 m/s) has a thickness that goes from 10 to 50 m. The bedrock shows a rough surface with clear steps also in the tomography results (Figure 5b).

Results from the wireless data are focused on deeper reflection imaging since they cover larger offsets and are better designed for this purpose. An unmigrated stacked section of the profile is shown in Figure 6. The most reflective part (D1) is in the central area of the profile, between CMP 1,200 and 2,000, where a strong package of reflectivity (also clearly observable on some receiver gathers, e.g., Figure 3) from 0.7 to 1.2 s with a domed shape pattern is visible. This main reflection on its eastern bottom intersects a west-dipping package of reflections, but with albeit lower continuity (F2). They project to the surface at the location of the Pocheon fault, where also a strong back-scattering of surface-waves is observed. The apparently curved side of F2 was first believed to be tails of diffractions caused by the fault, but traveltime modeling of diffraction hyperbola (e.g., Markovic et al., 2022) showed that it was not possible to fit a diffraction to this feature. A possible explanation for the absence of a clear diffraction related to the fault may be the high level of noise that covers their presence. This interpretation needs

Figure 4. (a) An example of raw receiver gather at station 487 showing notable backscattering of surface-waves marked by black arrows. (b–d) The same receiver gather as (a) but after different processing stages, (b) after the application of refraction static corrections, (c) after spectral equalization, deconvolution, time variant filter, and median filter, and (d) after surface-consistent residual static corrections and top mute Zappalá, 2022.
to be viewed with caution as the projection downwards and to the surface may not necessarily be valid. An important feature of the data is the strong reflectivity observed in the central part of the profile (D1). While the nature of this strong reflective zone is unclear, the presence of mafic dykes and natural geothermal fields, suggesting fluid presence that can enhance the reflectivity, in the area (Lee et al., 2010) make them a plausible explanation for the origin of the reflectivity. If the interpretation of the geometry is correct and if there is any fault underlying this dome-shaped reflective zone, then there might be a relationship between the geometry of the dome-shaped reflective zone and an underlying fault.

The apparent bending of the reflective zone (D1) toward the underlying planar-type reflectivity may imply a sense of movement or shearing with a “fault-bend fold” pattern (Figure 7), suggesting that much of the movement along the planar surface (fault) is then reverse (Suppe & Medwedeff, 1990). In this interpretation scenario, the reflective package D1 should be from materials that are isolated and planar in nature like sills and dykes, which is highly likely as they are present on the geological map of the area. There might also be fluids in this area as geothermal fields are known in the central region of the profile (Lee et al., 2010).

On the most eastern part of the profile, an east-dipping reflection (F1) is visible from 0.2 to 0.6 s; however, it is not strong and can only be observed in a portion of the shot/receiver gathers (Figure 6). The reflection projects to the location of the Wangsukcheon fault (Figure 2). Therefore, it is likely generated by the Wangsukcheon fault plane, implying a zone of brittle structures.

On the western part of the profile, various sub-horizontal reflections with a low lateral continuity are visible down to 2.5 s (or approximately 7.5 km depth). Between CMP 700 and 800, no coherent reflection is observed, and strong noise is present. This region coincides with the Chugaryeong fault; hence the lack of reflectivity

<table>
<thead>
<tr>
<th>Steps</th>
<th>Profile 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Read SEGD data</td>
</tr>
<tr>
<td>2</td>
<td>Zero-time corrections and cross-correlation with the theoretical sweep</td>
</tr>
<tr>
<td>3</td>
<td>Vertical stacking (four repeated sweep records)</td>
</tr>
<tr>
<td>4</td>
<td>Geometry setup (CMP spacing 10 m for both streamer and wireless data)</td>
</tr>
<tr>
<td>5</td>
<td>First-break picking</td>
</tr>
<tr>
<td>6</td>
<td>Trace edit</td>
</tr>
<tr>
<td>7</td>
<td>Surface-consistent refraction static corrections</td>
</tr>
<tr>
<td>8</td>
<td>Elevation static corrections (200 m, 5,000 m/s)</td>
</tr>
<tr>
<td>9</td>
<td>Notch filter: 60 Hz</td>
</tr>
<tr>
<td>10</td>
<td>Predictive deconvolution (150 ms window and 24 ms gap)</td>
</tr>
<tr>
<td>11</td>
<td>Spectral balancing: 10–30–90–110 Hz</td>
</tr>
<tr>
<td>12</td>
<td>Band-pass filter: 10–25–110–130 Hz (time variant)</td>
</tr>
<tr>
<td>13</td>
<td>Median filters (2,500, 5,000 m/s)</td>
</tr>
<tr>
<td>14</td>
<td>AGC (300 ms)</td>
</tr>
<tr>
<td>15</td>
<td>Velocity analysis (constant velocity stacks—CVS)</td>
</tr>
<tr>
<td>16</td>
<td>Local crossdip correction</td>
</tr>
<tr>
<td>17</td>
<td>Surface-consistent residual static corrections (two runs)</td>
</tr>
<tr>
<td>18</td>
<td>NMO corrections (40% stretch mute)</td>
</tr>
<tr>
<td>19</td>
<td>Stack (diversity)</td>
</tr>
<tr>
<td>20</td>
<td>FX-deconvolution</td>
</tr>
<tr>
<td>21</td>
<td>Balance amplitude</td>
</tr>
<tr>
<td>22</td>
<td>Migration (phase shift, 5,000–6,500 m/s)</td>
</tr>
<tr>
<td>23</td>
<td>Time-to-depth conversion (constant velocity, 6,000 m/s)</td>
</tr>
<tr>
<td>24</td>
<td>Export for plotting and 3D visualizations</td>
</tr>
</tbody>
</table>
may be explained by the sub-vertical nature of this fault (F3). The strong surface-wave back scattering energy observed at this location further supports this interpretation. Vertical barriers like faults are natural features that can back-scatter surface-waves (Blonk & Herman, 1994; Yu et al., 2014).

6. Discussion

6.1. 3D Reflection Traveltime Modeling

To justify some of the seismic interpretations, we scrutinized the data further. For the most eastern reflection (F1), because it comes near the surface and it is clearly observed in several shot and receiver gathers, we were able to model the reflection traveltime response based on Ayarza et al. (2000), assuming a similar strike as the Wangsukcheon fault, a velocity above the fault of 5,000 m/s, and the position where the reflection intersects the surface. A strike of N20E and dip of 60E can explain the reflection traveltime observed in the real data, hence further supporting its origin as being from the Wangsukcheon fault.

6.2. Origin of Strong Surface-Waves Back Scatterings

Given the strong surface waves back-scattering observed in the data (i.e., Figure 4), it was important to further analyze their properties. The Zerwer et al. (2005) method, as implemented for multifold data by Colombero et al. (2019), was applied on a straight linear line, as opposed to the curved reflection processing line, along the profile to estimate the location of sharp lateral variations in the near-surface and the corresponding maximum affected wavelength. This method shows interesting results for locating lateral variations at different places along the profile. These locations were compared with the bedrock reflection from the landstreamer data and tomography.
results from the wireless recorders (Figure 5), as well as shot and receiver gathers where surface-waves are clearly back scattered. Two of these surface-wave back scattering sources are particularly strong: (a) where the Chugaryeong fault is mapped at 5 km distance along the profile and (b) at CMP location 2840 at approximately

Figure 6. (a) Unmigrated stacked section of the wireless recorder data. For display purpose, three zoomed windows are shown in panels (b–d) where a transparent channel of reflectivity is interpreted to represent the Chugaryeong fault (F3); the domed reflective package (D1) with underlying reflections (F2), in the central part of the profile, may represent the Pocheon fault position, a crossdip correction of 10° to the north has been applied; an east-dipping reflection interpreted to be from the Wangsukcheon fault (F1) Zappalà, 2022.

Figure 7. (a) A portion of the migrated stacked section of P3 illustrating a possible fault-bend-fold structure from D1 caused by F2 faulting (likely a thrust system). Sketch showing the structures (b) before and (c) after faulting.
25 km distance along the profile. Although no corresponding faults are represented in the geology at this last location, a sharp geological contact between Paleoproterozoic gneiss and Jurassic granite suggests the presence of some tectonic structure that could be the reason for the surface-wave back-scattering energy. The two locations show, respectively, a minimum frequency of 12 and 17 Hz with a maximum affected wavelength of 110 and 100 m. This distinguishes the scattering to be geological in nature and not due to human constructions such as road and bridge foundations. Considering the maximum affected wavelength, the results reflect a carved bedrock and its overlying sediments, implying that these are zones of weaknesses and probably faults. Similar strong back-scattered surface-waves are also visible at the Pocheon fault surface location, but showing a lower intensity.

6.3. Crossdip Analysis and Out-of-Plane Structures

The crooked nature of the profile implies that the trace midpoints are distributed along a 3D zone, allowing evaluation of out-of-the-plane structures and apparent dips for several reflections. This effect was further exploited using a crossdip analysis approach (Beckel & Juhlin, 2019; Bellefleur et al., 1995; Malehmir et al., 2009; Nedimović & West, 2003; Rodriguez-Tablante et al., 2007). For the reflection (F2) underlying the dome-shaped reflections (Figures 6c and 7), we were able to estimate a crossdip angle of 10° to the north and a true dip of approximately 30° toward NW. The crossdip analysis could only be achieved thanks to the midpoint coverage provided by the crookedness of the profile.

6.4. Fault 3D Geometries and Seismicity

The information gained from all the analyses were compiled and used to construct 3D surfaces of potential major fault systems along the profile (Figure 8). Based on these surfaces, it is possible to interpret the location and geometry of two of the major fault systems in the area, namely the Wangsukcheon (F1) and Chugaryeong (F3) faults with high reliability. The Wangsukcheon fault dips opposite to what was first expected, especially if considering that it would be a splay fault from the Chugaryeong fault. This implies that the Wangsukcheon fault is likely a separate and unrelated fault system with respect to the two other ones or that it makes a sharp turn as it extends to the northern part of the country (Figure 1). Recent excavation works (Han & Lee, 2019) and historical studies (Kim, 1973) further support our interpretation of the dip direction of the Wangsukcheon fault and the reliability of the 3D reflection traveltime modeling work. The Chugaryeong fault is not imaged as a reflection, as expected.
for a sub-vertical feature that has also been argued from focal mechanism solutions (Hong et al., 2018, 2021). Nonetheless, there are related features that support the sub-vertical nature of the Chugaryeong fault such as (a) the absence of coherent reflection, (b) the sharp and important lateral variation visible at the bedrock level in both the landstreamer data and tomography, and (c) the extremely high surface wave back-scattered energy. All these features are observed at the fault surface expression (Choi et al., 2012). The reflections (F2) underlying the domed reflectivity package (Figures 6c and 7) have a true dip of approximately 30° toward the NW. This dip angle was to a certain degree speculated upon by Malehmir et al. (2022) for Pocheon fault but is different from previous suggestions (Hong et al., 2021). Surface projection of these reflections corresponds to the location of strong surface-wave back scattered energy at the mapped position of the Pocheon fault. Interestingly, projecting the reflections toward depth results in them intersecting with the recorded seismicity, suggesting an intersection with the Chugaryeong fault. While this is highly speculative, a possible scenario might be that the Pocheon fault is a splay fault from the Chugaryeong fault system and that the recorded seismicity occurs at their intersection. Malehmir et al. (2022) argued for the same geometry, however they had a much shorter profile, hence their arguments were more speculative. Another possible scenario will be that the F2 reflection is generated by a different fault that becomes steeper close to the surface. Pocheon fault instead will be subvertical, as suggested from seismological focal mechanism inversion studies (Hong et al., 2021), hence not imaged. There may be a third scenario explaining the NW-dipping package of reflectivity underlying the dome-shape reflectivity (F2), namely dykes as they are also interpreted to be present in the dome-shape reflectivity and diffractivity.

Given the curved-shaped nature of the reflectivity overlying these planar sets of reflections, we argue for a thrust (reverse mechanism) fault system associated with these reflections. Thrust faults are known to generate fault-bend folds and this implies the dome-shaped reflectivity might be the result of a growth fault system that was active sometimes (even until now). In this scenario, the reflective package would initially have consisted of sill-type intrusions, which were then folded, and likely also faulted, forming the dome-shaped reflectivity observed in the central part of the study area (Figure 7). Assuming this interpretation scenario is correct, a direct implication is that both the Chugaryeong and F2 faults might be active. Given the opposite dip direction of the Wangsukcheon, it is likely that any seismicity along this fault should be separately looked at, although the fault appears to be inactive in terms of seismicity recorded in the area.

7. Conclusions

We have acquired an approximately 40-km long reflection seismic profile intersecting three major fault systems (Chugaryeong, Pocheon, and Wangsukcheon faults) in the broader metropolitan area of Seoul in South Korea. The data are consistent with the Chugaryeong fault being a sub-vertical structure below the location where it is geologically mapped. From a seismic viewpoint, surface-waves show strong back scattering from it and it shows no coherent reflectivity. A 30-degree NW dipping zone of reflectivity underlying a dome-shaped reflective package is imaged in the central part of the migrated stacked section and it is interpreted as a fault. A dyke or sill system intersected by the propagating fault has resulted in the fault-bend fold structures (dome-shaped reflectivity). This fault if projected downwards would intersect a series of seismic events at the intersection with the Chugaryeong fault. This further suggests, and confirms a recent speculation, a relation between the two faults concerning the intersection and the seismicity, with the implication that both faults may be active and form splays. If this fault is projected to the surface it will intersect Pocheon fault surface expression and related strong surface wave back scattering, unfortunately there is no imaging of the near surface geometry of Pocheon fault to confirm or reject this possibility. The Wangsukcheon fault, on the other hand, is found to have a N20E/60E geometry, implying an opposite dip angle from the other two faults. There is no related seismicity associated with the Wangsukcheon fault in the area, which may justify why it has completely different geometry with respect to the two other faults.

Data Availability Statement

Original data underlying the material presented are available by contacting the corresponding author. The data showed in figures and used for any conclusion of this article are available at SND Swedish National Data Service with same title as this paper “Crustal-scale fault systems in the Korean peninsula unraveled by reflection seismic data” via https://doi.org/10.57804/f8w5-6r98.
Acknowledgments
We thank the contributions of many students and post-docs from Yonsei University and Uppsala University, Geopartner and C&H Company. Chiara Colombo and Politecnico di Torino provide access to the surface waves back scattering energy computation code. We thank two anonymous reviewers and the editor for their constructive comments that helped to improve an earlier version of this paper. This work was supported by the Basic Science Research Program of National Research Foundation of Korea (NRF-2017R1A6A1A07015374).

References

