Regional Source Scaling of the 9 October 2006 Underground Nuclear Explosion in North Korea

by Tae-Kyung Hong and Junkee Rhie

Abstract The 9 October 2006 underground nuclear explosion (UNE) test in North Korea was well monitored by dense regional seismic stations in South Korea, Japan, and China. This observation allows extensive investigation of the regional source properties of the UNE. The moment for isotropically radiated energy from the UNE is estimated to be 2.92×10^{14} N m. Source spectra of major regional phases from the UNE are studied by inverting for apparent moments, corner frequencies, overshoot parameters, attenuation factors, and frequency power-dependence parameters. The overshoot parameters of P phases from the UNE are estimated to be high, while those of S phases are estimated to be significantly low. The inverted source spectra agree well with conventional models. The low overshoot parameters of S phases suggest that their excitation sources may be different from those for Pn and Pg. It is shown that Pn/Lg and Pg/Lg amplitude ratios are useful for discriminating between UNEs and natural earthquakes in the frequencies of 1–8 Hz.

Introduction

The shear-wave excitation mechanism from an underground nuclear explosion (UNE) has not yet been fully understood, despite various efforts. This is partly because UNEs have been recorded by sparse local or regional seismic stations due to geographical and political limitations (e.g., Peppin, 1976; Hong and Xie, 2005; Fisk, 2007). The sparse observation of UNEs prevents thorough investigation of regional source properties (cf., Murphy and Barker, 2001). The source properties could be partly understood through statistical analyses of various sparse UNE records (e.g., Xie and Patton, 1999; Al-Eqabi et al., 2001; Fisk, 2006). However, many aspects of UNE source properties still remain unclear.

In the inversion of source spectra from regional waveforms, a theoretical source spectral model should be adopted. Several UNE source spectral models have been proposed (e.g., Mueller and Murphy, 1971; Aki et al., 1974; Lay et al., 1984; Sereno et al., 1988; Denny and Johnson, 1991). These UNE source spectral models incorporate overshoot parameters for the description of characteristic spectral amplification around the corner frequencies (Aki et al., 1974; Lay et al., 1984). It is known that the overshoot parameter and corner frequency vary with source depth and source-region properties (Mueller and Murphy, 1971; Lay et al., 1984; Fisk, 2007). However, the overshoot feature has not been examined sufficiently for various types of UNEs.

Various techniques have been proposed for discriminating nuclear explosions from natural earthquakes (Stevens and Day, 1985; Woods et al., 1993; Kim et al., 1997; Xie and Patton, 1999). One promising method is to compare Pn/Lg spectral amplitude ratios between UNEs and earthquakes. This method requires us to analyze source spectra of the UNE and a nearby earthquake because regional waveforms can vary with ray paths.

The 9 October 2006 nuclear explosion in North Korea was recorded by dense regional networks in China, Japan, and South Korea. This UNE test in North Korea provides us a valuable chance to investigate the regional source properties. We invert for source parameters of regional phases, and examine the characteristics of P/S spectral amplitude ratios.

Data and Geology

Dense seismic networks are operated in China, Japan, and South Korea (Fig. 1). The 9 October 2006 nuclear explosion test in North Korea was well observed by the regional seismic networks. The magnitude of the event is m_b 4.2 (e.g., Hong et al., 2008). We collect 48 broadband seismic records from the regional networks. The discrete sampling rates of seismometers are 0.05, 0.0125, and 0.01 sec, and the epicentral distances are 307–1116 km. We clearly observe major regional phases (Fig. 2). The azimuths of the UNE to stations in Japan and South Korea are 65°–228°, which is reasonably good coverage considering the azimuthally symmetric radiation pattern of a point source. An additional station, MDJ, is available in the azimuthal direction of 5°.

Seismic records for a nearby earthquake are additionally analyzed for comparison with the UNE. The earthquake
occurred at 82 km southwest from the UNE on 16 April 2002 (Fig. 1). The focal depth is 10 km and the magnitude is 4.1 according to the bulletin of the International Seismological Center (see Data and Resources section). Note that the northeastern part of the Korean Peninsula is a seismologically quiescent place, and the earthquake is the only one in which the crustal structure changes abruptly with distance from the coast (Cho et al., 2004). Crustal phases are significantly attenuated across the continental margin (Hong et al., 2008).

Moment from Long-Period Waveform Inversion

We analyze long-period waveforms to estimate the moments of the UNE and the earthquake. Long-period waves are less sensitive to small-scale structure along ray paths than short-period waves. We analyze seismic records of stations MDJ, CHC, and SNU (Fig. 1) considering the signal-to-noise levels and azimuthal coverage. Their epicentral distances are less than 470 km.

The isotropic moment of the UNE is estimated using a long-period waveform inversion technique (Dreger and Helmberger, 1993). The choice of a frequency band sustaining sufficiently large signal-to-noise level is crucial for stable inversion. We examine spectral contents of waveforms relative to those of background noises before the Pn onset time. The spectral amplitude ratios between the signal and noise are presented in Fig. 3. We find that the signal-to-noise ratio is sufficiently large in the frequency range between 0.05 and 0.16 Hz.

We analyze waveforms band-pass-filtered between 0.05 and 0.1 Hz for the long-period waveform inversion. Note that the regional waves with dominant frequency around 1 Hz are significantly influenced by crustal structures, while long-period waves are less influenced by small-scale crustal variations (e.g., Hong et al., 2008). Thus, long-period waveform inversions can be performed stably with an average velocity model. We apply the 1D seismic velocity model of Chang and Baag (2005) for the inversion.

The seismic waveforms from a source can be expressed by (Aki and Richards, 1980, p 53)

\[
A_j(x_i, t) = M_{pq}(t) G_{jp,q}(x_i, x_i, f_0, t) + E_j(x_i, t),
\]

(1)

where \(A_j(x_i, t; x_i, 0)\) is the observed displacement time record in component \(j\) of station \(i\) at \(x_i\) for a source located at \(x_i\), \(M_{pq}(t)\) is the moment tensor with source-time function, \(G_{jp,q}(x_i, x_i, f_0, t)\) is the Green’s function corresponding to the displacement in \(j\) component at station \(i\) for a point impulse of frequency \(f_0\) in the direction of \(p\), and \(G_{jp,q}\) is the Green’s function differentiated in the spatial direction of \(q\). In addition, \(E_j(t)\) is the error term accounting for the non-double-couple component of the source and incorporation of an imperfect Green’s function. Here, the source-time function of an event can be disregarded for expression of long-period displacements because regional seismic waves are dominated by short-period energy.

The moment tensor of an event can be described with a sum of isotropic and deviatoric components (Ford et al., 2008):

\[
M_{ij} = M_{ij}^{\text{iso}} + M_{ij}^{\text{dev}}, \quad i, j = 1, 2, 3,
\]

(2)

where \(M_{ij}^{\text{iso}}\) is

\[
M_{ij}^{\text{iso}} = \delta_{ij}(M_{11} + M_{22} + M_{33})/3,
\]

(3)

and \(M_{ij}^{\text{dev}}\) is

\[
M_{ij}^{\text{dev}} = M_{ij} - \delta_{ij}(M_{11} + M_{22} + M_{33})/3.
\]

(4)

Here, an explosive source is dominated by the isotropic component \(M_{ij}^{\text{iso}}\), and a double-couple source is dominated by
the deviatoric component (Ford et al., 2008). We measure the isotropic moment for the UNE and the deviatoric moment for the earthquake.

The Green’s functions for an explosive source and a double-couple source are computed using a frequency-wavenumber integration method (Saikia, 1994). We then align the observed waveforms with the synthetic Green’s function using cross correlations to correct for unmodeled complex 3D propagation effects. We use vertical and radial components for the UNE waveform inversion, counting only the isotropic radiation component. The UNE waveform inversion based on equation (1) is an overdetermined problem with only one unknown (M_{iso}^0). The 200 sec waveforms around the maximum amplitudes in the time records are analyzed for the waveform inversion. We estimate the deviatoric moment tensor ($\overline{\mathbf{M}}_{\text{dev}}^0$) of the earthquake using three-component records.

The isotropic moment of the UNE is estimated to be 2.92×10^{14} N m. The deviatoric moment of the earthquake is given by 1.42×10^{14} N m. The inverted moment tensor solution is presented in Figure 1. The variance reduction is 62% in the UNE waveform inversion and 71% in the earthquake waveform inversion. The focal depth of the earthquake is estimated to be 7 km, which reasonably agrees with the Bulletin of the International Seismological Center (10 km).

Note that the estimated isotropic moment of the UNE is consistent with Walter et al. (2007), which estimated the UNE moment by 3×10^{14} N m. This isotropic moment estimate corresponds to an m_b of 4.12–4.66 according to the regional moment-magnitude relationship of Patton and Walter (1993). This inferred body-wave magnitude agrees well with the recent m_b estimate of Hong et al. (2008). When the isotropic moment is inverted for each station, the mean isotropic moment is estimated to be 2.97×10^{14} N m with a standard deviation of 0.57×10^{14} N m. The synthetic waveforms for both the UNE and the earthquake agree well with the observed waveforms for all stations (Fig 4).

Figure 2. Vertical velocity seismograms of the UNE (a, b) and earthquake (c, d). The seismograms in the left column are band-pass-filtered between 1 and 2 Hz, and those in the right column are 2 Hz records. The major regional phases (P_n, P_g, S_n, and L_g) are denoted. The phase velocities of travel-time curves for P_n, P_g, S_n, and L_g are 7.95, 6.05, 4.5, and 3.57 km/sec, respectively. Phase R_g with apparent velocity of 2.9 km/sec is barely detectable. High-frequency P phases are observed up to a distance of 1100 km.
Theoretical Source Spectral Model

The waveform of a phase is the result of the combined influence of source and ray path properties. The amplitude of a phase can be expressed by (Sereno et al., 1988; Taylor and Hartse, 1998; Xie and Patton, 1999)

\[A_i(f) = S(f)G(d_i) \exp\left(-\frac{\pi f d_i}{v_g Q_i(f)}\right)e_i(f), \]

where \(A_i(f) \) is the ground motion at station \(i \) at the frequency of \(f \), \(S(f) \) is the source spectrum, \(G(d_i) \) is the geometrical spreading term for the distance of \(d_i \), \(Q_i(f) \) is the attenuation factor for the ray path to station \(i \), \(v_g \) is the group velocity of the phase, and \(e_i(f) \) is the cumulative effect of the other minor factors along the ray path.

The UNE source spectrum \(S(f) \) in (5) can be expressed by (Mueller and Murphy, 1971; Sereno et al., 1988; Xie and Patton, 1999)

\[S(f) = \frac{M_0}{4\pi \rho_s v_s^3} \sqrt{1 + (1 - 2\xi)^2 f^2 / f_c^2 + \xi^2 f^4 / f_c^4}, \]

where \(M_0 \) is the moment, \(\xi \) is the overshoot parameter, \(f_c \) is the corner frequency, \(\rho_s \) is the density in the source region, and \(v_s \) is the velocity of the phase in the source region. The quality factor for the ray path to station \(i \) can be expressed as a function of frequency

\[Q_i(f) = Q_{0,i} f^{\eta_i}, \]

where \(Q_{0,i} \) is the quality factor at 1 Hz and \(\eta_i \) is the power-law frequency dependence term. The frequency-independent geometrical spreading factor is given by

\[G(d_i) = (d_i/d_0)^{-\gamma}d_0^{-1}, \]

where \(\gamma \) is the decay rate of phase and \(d_0 \) is the reference distance.

Note that the UNE source spectral model was originally developed for the description of compressional waves (Mueller and Murphy, 1971). In this study we apply this model for source spectral inversion of \(S \) phases to investigate the nature of the \(S \) phases from UNE. We set \(d_0 = 100 \) km.

\[f_c \]

Table 1

<table>
<thead>
<tr>
<th>Phase</th>
<th>(f_c) (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pn)</td>
<td>5.7</td>
</tr>
<tr>
<td>(Pg)</td>
<td>4.7</td>
</tr>
<tr>
<td>(Sn)</td>
<td>3.0</td>
</tr>
<tr>
<td>(Lg)</td>
<td>2.1</td>
</tr>
</tbody>
</table>

*Has the deviatoric moment \(M_0 \) of \(1.42 \times 10^{14} \) Nm.
Figure 5. The quality factors at 1 Hz (Q_0) and their frequency power-law dependence terms (η) inverted from the earthquake records: (a) Pn, (b) Pg, (c) Sn, and (d) Lg. The quality factors at 1 Hz are low on ray paths to southern Korea, while those on the other paths are estimated to be relatively high.
and $\gamma = 0.5$ for L_g and $d_0 = 1$ km and $\gamma = 1.1$ for P_n, P_g, and S_n (Zhu et al., 1991; Walter and Taylor, 2002).

The seismic moment can be measured from the zero-frequency level of source spectrum, which requires an analysis of long-time record sections in practice. In this study we analyze the waveforms of regional phases, which practically have limited time durations. Such limitation of time-window length is inevitable for analyses of regional phases. Thus, it is difficult to estimate the correct moment of event from regional phases.

We invert for the apparent moment, corner frequency, overshoot parameter, and quality factors at 1 Hz and power-law frequency dependence terms from displacement spectra. The model vector to be determined can be written by

$$\mathbf{m}^T = (M_0, f_c, \xi, Q_{0,1}, \eta_1, Q_{0,2}, \eta_2, \ldots, Q_{0,n}, \eta_n)^T,$$

(9)

where n is the number of stations. Unknowns M_0, f_c, and ξ are determined using a grid search scheme in the inversion. We compose discrete sets of M_0, f_c, and ξ.

The source spectrum of an earthquake can be expressed by (Brune, 1970; Aki and Richards, 1980, p. 424; Stevens and Day, 1985)

$$S(f) = \frac{M_p R_{\theta_0}}{4\pi \sqrt{\rho_0 \rho_r v_r^2 v_1} (1 + f^2)} f_0^2 / f_c^2,$$

(10)

where R_{θ_0} is the amplitude scaling for the radiation pattern, and ρ_r and v_r are the density and seismic velocity in the receiver region, respectively. The radiation pattern R_{θ_0} is calculated considering the distribution of stations. We apply $R_{\theta_0} = 0.63$ for P phases (P_n, P_g) and $R_{\theta_0} = 0.43$ for S phases (S_n, L_g).

Table 2

Inverted Source Spectral Parameters of the 9 October 2006 UNE in North Korea

<table>
<thead>
<tr>
<th>Phase</th>
<th>M_0 (Nm)</th>
<th>f_c (Hz)</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_n</td>
<td>1×10^{14}</td>
<td>5.1</td>
<td>1.3</td>
</tr>
<tr>
<td>P_g</td>
<td>8×10^{13}</td>
<td>5.4</td>
<td>1.0</td>
</tr>
<tr>
<td>S_n</td>
<td>4×10^{13}</td>
<td>4.0</td>
<td>0.3</td>
</tr>
<tr>
<td>L_g</td>
<td>4×10^{13}</td>
<td>0.9</td>
<td>0.1</td>
</tr>
</tbody>
</table>

For analysis of each regional phase, we apply a 4.5 sec long moving time window with 0.2 sec long cosine tapering at both ends (Xie, 2002). The discrete time-shifting interval of the window is equal to the sampling interval of the record. We analyze major regional phases, P_n, P_g, S_n, and L_g. Waveforms in the time range between $d_i/7.95 + 5$ and $d_i/6.6 + 0.8$ sec, where d_i is the epicentral distance in kilometers to station i, are processed for P_n. Waveforms in the time range between $d_i/6.05 + 0.8$ and $d_i/5.0 + 11$ sec are processed for P_g. The time range for S_n is $d_i/4.5 + 11$ to $d_i/3.7 + 0.5$ sec. Waveforms in the times of group velocities between 3.57 and 3.15 km/sec are analyzed for L_g. The average power spectrum between 0.5 and 10 Hz is analyzed. The average power spectra are resampled by a 0.01 Hz interval using a cubic spline interpolation.

We apply velocities of phases, v_g in equation (5), by 7950 m/sec for P_n, 6050 m/sec for P_g, 4550 m/sec for S_n, and 3500 m/sec for L_g considering the seismic velocity structures in the area of the Korean Peninsula (Ritzwoller et al., 2002; Chang and Baag, 2005; Pei et al., 2007). The P- and S-wave velocities in the source and receiver regions (v_s and v_r in equations 6 and 10) are set to be 5670 m/sec and 3273 m/sec. The density in the source region (ρ_s) is 2580 kg/m3. We deconvolve the instrument responses from the regional waveforms before the source spectral inversion.

We invert the observed spectra for the model parameters in equation (9). Discrete sets of M_0, f_c, and ξ are iteratively applied for an inversion of Q_0, and η. Due to the nonuniqueness of inversion, various sets of model parameters can satisfy the observed spectra. For instance, there are trade-offs between Q and M_0. When a high Q is estimated, a low M_0 is determined accordingly and vice versa. Note that both M_0 and Q control the amplitude of the source spectrum. This nonunique determination of Q and M_0 is partly due to analysis of spectra in limited frequency bands. The regional waveform spectra are typically dominated by energy with frequencies of 1–8 Hz. The analysis with narrow spectrum bands may cause unstable estimation of Q and M_0 in the inversion. Model parameters Q_0 and η reflect the properties of ray paths, which are independent from the source properties. Thus, we find that model parameters f_c and ξ are determined stably despite the trade-off between M_0 and Q.

We introduce a two-step inversion scheme. In the first step of the inversion we calculate a set of model parameters with the minimum error. In this step we determine parameters f_c and ξ. In the second step we apply the f_c and ξ that are determined in the first step and determine the other model parameters, M_0 and Q. Model parameters M_0 and Q are determined nonuniquely in the second-step inversion because one parameter is subject to vary with the other parameter. We perform a grid search of moment that yields attenuation factors agreeing with results from other studies. This two-step approach constrains the model parameters easily and helps us to avoid local minima in the inversion. For each inversion we apply the LSQR method (the sparse linear equations and sparse least-squares method; Paige and Saunders, 1982).

Regional seismic waves of frequencies around 1 Hz are highly influenced by crustal structure (Kennett, 1986; Zhang and Lay, 1995; Kennett and Furumura, 2001; Hong et al., 2008). The quality factors (Q_0) are estimated to be stable in the continental region, while those on tectonic margins can vary with ray path due to abrupt variations in crustal structures. The tectonic structures around the Korean Peninsula are complex (Chough et al., 2000), and high
Figure 6. The quality factors at 1 Hz (Q_0) and their frequency power-law dependence terms (η) inverted from the UNE records: (a) Pn, (b) Pg, (c) Sn, and (d) Lg. The P phases display high η on the ray paths to southern Korea and southern Japan but low η to northern Japan.
Figure 7. Comparison of \(Q_0 \) and \(\eta \) for (a) \(P_n \), (b) \(P_g \), (c) \(S_n \), and (d) \(L_g \) phases between the UNE and the earthquake. The \(Q_0 \) and \(\eta \) are the quality factor at 1 Hz and the power-law frequency dependence term for ray paths to the stations, respectively. The \(Q_0 \) and \(\eta \) of the stations recording both events are presented. The stations names are annotated on the horizontal axis. Station MDJ is located in China, stations BRD–TJN are in South Korea, and stations ASI–YZK are in Japan. The \(S \) phases (\(S_n, L_g \)) display very similar path parameters between the UNE and the earthquake, while the \(P \) (\(P_n, P_g \)) phases show some difference by station.
Figure 8. Path parameters of (a) P_n and (b) P_g for source spectral inversions with implementation of a given moment, 2.92×10^{14} N m, which is obtained from the long-period moment inversion. Comparison of the path parameters with those of the earthquake is also presented (c) P_n and (d) P_g). The discrepancy of the inverted path parameters between the UNE and the earthquake becomes increased in both P_n and P_g phases.
Inversion of Source Spectral Parameters

We first determine the source parameters of the earthquake. The corner frequencies \((f_c) \) are estimated to be 5.7 Hz for \(Pn \), 4.7 Hz for \(Pg \), 3.0 Hz for \(Sn \), and 2.1 Hz for \(Lg \) (Table 1). As we have discussed in the previous section, we apply the moment \((M_0 = 1.42 \times 10^{14} \text{ Nm}) \) determined from the low-frequency waveform inversion and determine unique attenuation factors \((Q) \) along ray paths. The inverted attenuation factors are presented in Figure 5. These attenuation factors are used as the reference \(Q \) for comparison with those from the UNE source spectral inversion.

We now determine the source parameters of the UNE. The \(Pn \) source spectrum of the UNE is well represented by \(M_0 = 1 \times 10^{14} \text{ Nm} \), \(f_c = 5.1 \text{ Hz} \), and \(\xi = 1.3 \). The \(Pg \) spectrum has \(M_0 = 8 \times 10^{13} \text{ Nm} \), \(f_c = 5.4 \text{ Hz} \), and \(\xi = 1.0 \). For \(Sn \), \(M_0 = 4 \times 10^{13} \text{ Nm} \), \(f_c = 4.0 \text{ Hz} \), and \(\xi = 0.3 \). For \(Lg \) we have \(M_0 = 4 \times 10^{13} \text{ Nm} \), \(f_c = 0.9 \text{ Hz} \), and \(\xi = 0.1 \) (Table 2).

The estimated \(Pn \) overshoot parameter of the UNE is greater than the value conventionally assumed \((1.0; \text{ Xie and Patton, 1999}) \). On the other hand, the estimated \(Lg \) overshoot parameter is significantly lower than the conventional value \((0.75; \text{ Xie and Patton, 1999}) \). The estimated apparent moments for \(P \) phases \((Pn, Pg) \) are about one third of the moment determined from the low-frequency waveform inversion. This may be because the UNE source spectral model may underrepresent the low-frequency content of the UNE spectra.

From the \(M_0 - f_c \) scaling relationship of Xie (2002), the corner frequencies of \(Pn \) and \(Lg \) phases from the earthquake have 8.0 (±4) and 1.8 (±0.5) Hz, and those of the UNE have 6.6 (±3.1) and 1.5 (±0.3) Hz for the moment estimates from the long-period waveform inversions. The \(Pn \) and \(Lg \) corner frequencies of this study reasonably agree

Figure 9. Source spectra of the major regional phases from the UNE: (a) \(Pn \), (b) \(Pg \), (c) \(Sn \), and (d) \(Lg \). Vertical-component records are analyzed. The \(P \) phases display characteristic overshoot features. The \(S \) phases decrease monotonically with frequency. Inverted source spectra agree well with the theoretical curves.
with the scaling relationship of Xie (2002), although the L_g from the UNE appears to have a slightly lower corner frequency than the expected value.

The calculated Q_0 and η for the UNE records are presented in Figure 6. The overall distribution of quality factors (Q_0) and power-law frequency dependence terms (η) are similar between the UNE and earthquake, although ray paths from the UNE to the southern Korean Peninsula display much lower Q_0 and higher η than those from the earthquake (Figs. 5–7).

We find characteristic discrepancy in path parameters of P phases (P_n, P_g) between the UNE and the earthquake. The inverted path parameters show that P phases from the UNE appear to experience more attenuation at 1 Hz, but less in high frequencies than those from the earthquake. Also, the apparent moments for the P phases appear to be smaller than the moment estimate from long-period inversion. Note that the source spectral model of UNE in equation (6) was originally developed for compressional waves (Mueller and Murphy, 1971). Thus, we additionally conduct source spectral inversions of the P phases with a given moment of the moment estimate from long-period inversion.

We find that the discrepancy in path parameters is increased although the corner frequencies and overshoot parameters are hardly changed (Fig. 8). These observations confirm that the apparent moments for the P phases are smaller than the moment estimate from the long-period asymptote. This may be because the source spectral amplitude level of the UNE is not simply constant in low-frequency regimes, unlike the expectation in the source spectral model.

The apparent difference in Q_0 and η of P phases between the UNE and the earthquake may be explained with source properties and/or wave responses to medium, which may include: (1) inaccurate representation of source spectra of the UNE, (2) differences in radiation patterns between the UNE and the earthquake, and (3) influence of high-frequency wave scattering. Here, we examine each factor in turn.

The inaccurate representation of source spectra of the UNE may be direct explanation. As we have previously discussed, the real source spectra of the UNE can be more complicated than expected in the source spectral model, or some portion of energy can be underrepresented. For instance, the high-frequency rolloff rates of UNE source spectra are poorly resolved despite various efforts. The proposed high-frequency rolloff models include f^{-2} (Mueller and Murphy, 1971), f^{-3} (Lay et al., 1984), and f^{-4} (Haskell, 1967). The various UNE rolloff models are reviewed in Denny and Johnson (1991). However, it is well-known that the high-frequency rolloff rates of earthquake spectra agree with f^{-2} (Hanks and McGuire, 1981; Sereno et al., 1988).

If the high-frequency energy from the UNE is underrepresented by the source spectral model, the parameter η of the UNE would be higher than that of the earthquake in all

Figure 10. Source spectra of the major regional phases from the earthquake: (a) P_n, (b) P_g, (c) S_n, (d) L_g. The observed source spectra agree well with the theoretical curves.
ray paths. As shown in Figure 7, the η of P_n and P_g from the UNE is estimated to be higher than that of the earthquake for all stations, although the difference is much reduced in P_g for long-distance stations. Considering that P_n is the mantle-lid P phase and P_g a crustal P phase, the difference reduction in P_g for long-distance stations may be explained with the abrupt crustal-structure variation in the East Sea (Hong et al., 2008; Hong and Kang, 2009).

The influence of the radiation pattern of the sources is another factor to be considered. The radiation pattern of a source causes azimuthal variation in released energy. The azimuth-dependent energy variation can be interpreted as apparent variation of attenuation with azimuth. Thus, the azimuthal variation of the radiation pattern can be a plausible explanation.

The last factor, high-frequency wave scattering, is caused by interference with small-scale heterogeneities in the crust and upper mantle (Capon, 1974; Flatté and Wu, 1988; Sato and Fehler, 1998; Nishimura et al., 2002). Note that high-frequency energy is rich in compressional waves from nuclear explosions. Thus, scattering attenuation of compressional waves is expected to be strong in the high-frequency regime (Hong et al., 2005). The difference in radiation patterns and strong high-frequency scattering may be responsible for the difference in η between the UNE and the earthquake.

In Figures 5 and 6, the relatively high attenuation of regional phases on the paths to the Korean Peninsula may be associated with the Moho undulation and complex crustal transitions due to paleo-continental collisions and rifting (Chough et al., 2000). It is well known that crustal and mantle-lid phases are highly influenced by Moho topography and crustal structures (Kennett, 1986; Kværna and Doornbos, 1991; Zhang and Lay, 1995; Kennett and Furumura, 2001). The influence of crustal structures on regional waveforms from the UNE was confirmed by numerical waveform modeling (Hong et al., 2008).

It is intriguing to note that the S_n phase is less attenuated along paths to the eastern Korean Peninsula than along paths to the western Korean Peninsula, which agrees with an observation in Hong et al. (2008). We also find that the L_gQ values estimated in this study are lower than those of Hong et al. (2008), which are based on a coda normalization technique. This indicates that structural irregularity in the crust causes more significant attenuation than discrete heterogeneities embedded in the crust. This is because much of energy scattered due to structural variations leaks into the mantle. Note that coda waves in local and regional seismograms are mostly composed of energy scattered in the crust. The quality factors from a coda normalization method (e.g., Yoshimoto et al., 1993) reflect the temporal coda-decay rate,

Figure 11. P/S spectral amplitude ratios of the UNE records: (a) P_n/L_g, (b) P_n/S_n, (c) P_g/L_g, and (d) P_g/S_n. The observed P/S spectral amplitude ratios agree with the theoretical curves. The P/S spectral amplitude ratios increase with frequency in the frequencies lower than the P corner frequencies.
which does not take account of the amplitude level of the primary wave. The quality factors that we estimated in this study present the actual level of attenuation of the primary wave.

Source Spectrum and the P/S Spectral Amplitude Ratio

The source spectra of regional phases are calculated from equation (5) using the inverted parameters. The inverted source spectra agree well with theoretical expectations for both the UNE and the earthquake (Figs. 9 and 10). The consistent shapes of source spectra at all stations support the stability of the inversion. We observe that the UNE source spectra of P_n and P_g display characteristic overshoot features (Fig. 9). On the other hand, the source spectra of S_n and L_g from the UNE display weak overshoot features.

The spectral amplitude ratios between P and S phases display good agreement with theoretical expectations for both the UNE and the earthquake (Figs. 11 and 12). The P/S spectral amplitude ratios of the UNE increase with frequency in the frequencies lower than the P-phase corner frequencies and decrease with frequency at the higher frequencies. The P/S spectral amplitude ratios of the earthquake appear to increase linearly with frequency in the entire frequency range.

Comparisons of P/S spectral amplitude ratios between the UNE and the earthquake enable us to determine the spectral features of the UNE. The spectral features can be used for discrimination of UNEs from earthquakes. The P_n/L_g and P_g/L_g spectral amplitude ratios of the UNE appear to increase linearly with frequency in the entire frequency range of 1–8 Hz (Fig. 13). However, the P_n/S_n and P_g/S_n spectral amplitude ratios appear to be less effective.

Characteristics of the UNE Source Spectrum

We have shown that the P/S spectral amplitude ratios are useful for discriminating between UNEs and earthquakes. However, it is not clear whether this is caused by implementation of characteristic UNE source models. We examine the inherent source spectral features of the UNE by testing whether the UNE source spectra can be represented by earthquake source spectral models. We implement Brune’s earthquake source spectral model in equation (10) for the test. The source parameters are determined by $M_0 = 2.5 \times 10^{14}$ N m and $f_c = 4.0$ Hz for P_n, $M_0 = 1.5 \times 10^{14}$ N m and $f_c = 5.1$ Hz for P_g, $M_0 = 9.5 \times 10^{13}$ N m and $f_c = 6.1$ Hz for S_n, and $M_0 = 6.5 \times 10^{13}$ N m and $f_c = 2.0$ Hz for L_g (Table 3).

Note that the apparent moments determined from P phases are close to the moment estimated from the low-frequency waveform inversion. Also, these apparent UNE
moments are higher than the estimates based on the UNE source spectral models in Table 2. This indicates that the UNE source spectral model appears to underestimate the level of spectral energy compared to the earthquake source spectral model. We also find that the apparent moments for S phases of the UNE are lower than the deviatoric moment of the earthquake. These observations imply that the amount of compressional energy excited from the UNE is similar to that from an earthquake with a comparable magnitude. However, the shear energy from the UNE is far weaker than that from the earthquake.

The source spectra of S phases \((Sn, Lg)\) are reasonably represented by Brune’s earthquake source spectral models (Fig. 14). However, \(P\) phases \((Pn, Pg)\) are poorly represented due to the characteristic overshoot feature in the \(P\) source spectra. Because of the poor representation of \(P\) source spectra, the \(P/S\) spectral amplitude ratios are poorly matched with the theoretical curves based on Brune’s earthquake source spectral models (Fig. 15).

Because the \(Lg\) phase is less excited from the UNE than from the earthquake, the \(Pn/Lg\) and \(Pg/Lg\) spectral amplitude ratios of the UNE display higher amplitudes than those of the earthquake (Fig. 16). The \(P/Sn\) spectral amplitude ratios appear to be similar between the UNE and the earthquake. These observations indicate that comparisons of source spectra and shear-energy contents between UNEs and earthquakes of comparable magnitudes may be useful for discrimination of UNEs from natural earthquakes, regardless of the type of theoretical source spectral model adopted.

Discussion and Conclusions

The 9 October 2006 UNE in North Korea was well recorded by dense regional networks deployed in South Korea, Japan, and China. The dense observation allowed us to investigate the regional source properties of the UNE. The isotropic moment of the UNE was estimated to be \(2.92 \times 10^{14}\) N m from long-period waveform inversion. The source spectra of regional phases from the UNE were inverted with

<table>
<thead>
<tr>
<th>Phase</th>
<th>(M_0) (N m)</th>
<th>(f_c) (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pn)</td>
<td>(2.5 \times 10^{14})</td>
<td>4.0</td>
</tr>
<tr>
<td>(Pg)</td>
<td>(1.5 \times 10^{14})</td>
<td>5.1</td>
</tr>
<tr>
<td>(Sn)</td>
<td>(9.5 \times 10^{13})</td>
<td>6.1</td>
</tr>
<tr>
<td>(Lg)</td>
<td>(6.5 \times 10^{13})</td>
<td>2.0</td>
</tr>
</tbody>
</table>
determination of the apparent moments, corner frequencies, overshoot parameters, and attenuation factors. The apparent moments for the regional phases are estimated to be lower than the moment estimate from the long-period analysis, which may be because the source spectra of the UNE are underrepresented by the theoretical source spectral model in low-frequency regime.

The overshoot parameters of P phases from the UNE are higher than those of S phases. The overshoot parameter of P_n is larger than the conventional value, while those of S_n and L_g are lower. The P phases from the UNE are well represented by the UNE source spectral models but poorly by Brune’s earthquake source spectral models. However, the S phases for the UNE are well represented by both the UNE and the earthquake source spectral models. These observations suggest that the shear energy may be excited from a secondary source.

Among various shear-wave excitation mechanisms proposed, tectonic release (Wallace et al., 1985), spalling (Day and McLaughlin, 1991), and rock cracking (Massé, 1981) may be plausible. The explosive source features, that is, strong compressional energy and strong spectral overshooting, allow us to use the P/S spectral amplitude ratios to discriminate between nuclear explosions and earthquakes. Such discrimination appears to be effective in the frequency range of 1–8 Hz.

Figure 14. Source spectra of regional phases from the UNE for inversions based on Brune’s earthquake source model: (a) P_n, (b) P_g, (c) S_n, and (d) L_g. The P phases (P_n, P_g) poorly match with the theoretical source spectral curves due to the strong overshoot feature. The S phases (S_n, L_g) agree reasonably well with the theoretical curves based on the earthquake source spectral model.

Data and Resources

Event information and seismic waveform data except the UNE data recorded in Korea were collected from the Korea Meteorological Administration (KMA, www.kma.go.kr, last accessed December 2008), the Korea Institute of Geoscience and Mineral Resources (KIGAM, quake.kigam.re.kr, last accessed December 2008), the Incorporated Research Institutions for Seismology (IRIS, www.iris.edu/data, last accessed December 2008), the National Research Institute for Earth Science and Disaster Prevention (NIED, www.fnet.bosai.go.jp, last accessed September 2008), and the International Seismological Center (ISC, www.isc.ac.uk, last accessed December 2008). The seismic waveform data for the UNE recorded in South Korea were collected from KMA and KIGAM with permission.

Some figures were produced using the Generic Mapping Tools (GMT, Wessel and Smith, 1998; gmt.soest.hawaii.edu, last accessed September 2008).

Acknowledgments

We are grateful to KMA, KIGAM, IRIS, and NIED in Japan for making seismic data available. We thank the associate editor, Dr. Anton Dainty, and three anonymous reviewers for their fruitful and constructive comments, which improved the presentation of the article. This work was supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2007-5111.
Figure 15. P/S spectral amplitude ratios of the UNE records for implementation of Brune’s earthquake source model: (a) Pn/Lg, (b) Pn/Sp, (c) Pg/Lg, and (d) Pg/Sp. The P/S spectral amplitude ratios are poorly represented by theoretical curves based on the earthquake source model due to the characteristic overshoot feature in P phases.

Figure 16. Comparisons of P/S spectral amplitude ratios between the UNE and the earthquake, both of which are inverted using Brune’s earthquake source model: (a) Pn/Lg, (b) Pn/Sp, (c) Pg/Lg, and (d) Pg/Sp. The observed Pn/S spectral amplitude ratios of the UNE poorly match with the theoretical curves due to the high overshoot feature in Pn source spectra. The P/Lg spectral ratios of the UNE are well separated from those of the earthquake. The implementation of earthquake source models appears to still be effective for discrimination between nuclear explosions and earthquakes.
References

Yonsei University
Department of Earth System Sciences
Shinchon-dong, 134, Seodaemun-gu
Seoul 120-749, South Korea
tkhong@yonsei.ac.kr
(T.-K.H.)

Seoul National University
School of Earth and Environmental Sciences
599 Gwanangno, Gwanak-gu
Seoul, 151-742, South Korea
(J.R.)

Manuscript received 1 April 2008