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Scattering Attenuation of 2D Elastic Waves: Theory and Numerical

Modeling Using a Wavelet-Based Method

by Tae-Kyung Hong and B. L. N. Kennett

Abstract The passage of seismic waves through highly heterogeneous media
leads to significant scattering of seismic energy and an apparent attenuation of seis-
mic signals emerging from the heterogeneous zone. The size of this scattering atten-
uation depends on the correlation properties of the medium, the rates of P- and
S-wave velocities, and frequency content of the incident waves. An estimate of the
effect can be obtained using single scattering theory (first-order Born approximation)
for path deviations beyond a minimum scattering angle; smaller deviations require
consideration of multiple scattering or a representation in terms of travel-time per-
turbations. Although an acoustic treatment provides a quantitative reference, full
elastic effects need to be taken into consideration to get an accurate attenuation rates.
The use of a wavelet-based modeling technique, which is accurate and stable even
in highly perturbed media, allows an assessment of the properties of different classes
of stochastic media (Gaussian, exponential, von Karman). The minimum scattering
angle for these stochastic media is in the range of 60� to 90�. The wavelet-based
method provides a good representation of the scattered coda, and it appears that
methods such as finite differences may overestimate scattering attenuation when the
level of the heterogeneity is high.

Introduction

One of the most important topics in regional seismic
studies is the influence of scattering due to material inho-
mogeneities and anisotropy in the crust and the upper mantle
(Nolet et al., 1994, Wu et al., 1994). Scattering processes
modify both the travel times and amplitudes of seismic
waves. A full representation of scattering phenomena re-
quires consideration of multiple scattering effects, which are
difficult to handle. In consequence, attention has focused on
single scattering implemented via a first-order Born approx-
imation for weakly heterogeneous regions (Wu, 1982; Fran-
kel and Clayton, 1986).

The single scattering theory is applied mainly to back-
scattered and side-scattered energy, and the more complex
effects in forward scattering are taken care of by including
a correction for the induced travel-time shift inside a certain
angular range around the propagation direction. The sepa-
ration between the two different approximation regimes is
made at the “minimum (or, cutoff) scattering angle” (Roth
and Korn, 1993; Sato and Fehler, 1998; Kawahara, 2002).
Estimates of this minimum scattering angle have been made
using numerical modeling of stochastic media in an acoustic
approximation or with a full elastic treatment (Frankel and
Clayton, 1986; Jannaud et al., 1991; Roth and Korn, 1993;
Frenje and Juhlin, 2000). Alternatively, estimates of the min-
imum scattering angle have been made theoretically for ran-
dom acoustic media (Sato, 1984; Kawahara, 2002).

However, there is still some uncertainty as to the ap-
propriate minimum scattering angle for elastic waves be-
cause much of the work has been undertaken in the acoustic
approximation (Roth and Korn, 1993) or with a scalar wave
approach, even for elastic wave studies (Frankel and Clay-
ton, 1986). The scattering pattern of elastic waves is com-
plex and is significantly different from that of scalar waves
(Wu and Aki, 1985) due to the inherent characteristics of
elastic waves such as wave-type coupling, the radiation pat-
terns in scattering, and complex interferences between the
waves. As a result, numerical modeling for elastic waves
needs to be compared with theoretical results for a full un-
derstanding of the influence of elastic wave scattering. The
minimum scattering angle, as one of the key factors in single
scattering theory, thus needs to be determined properly and
the relation to the acoustic theory explored.

Single scattering theory for 3D elastic waves has been
developed in several studies. Wu and Aki (1985) compared
theoretical scattering coefficients based on the Born approx-
imation with results derived from observations and tried to
reveal the characteristics of heterogeneities in the litho-
sphere. Wu (1989) introduced the “perturbation method” for
the scattering of elastic waves in random media, which con-
siders the scattering waves as the response of the perturba-
tions to the incident waves in a sense of a radiation problem.
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Sato and Fehler (1998) followed a similar approach but con-
sidered an additional important factor, a travel-time correc-
tion applied to the Born approximation, to determine the
correct energy loss during scattering. They associated the
travel-time shift by the fractional-velocity fluctuation due to
the long wavelength component of scattered waves, that is,
waves with wavelength more than twice that of the dominant
frequency. This approach has been used to determine the
minimum scattering angle to be employed in the estimation
of scattering attenuation of elastic waves in 3D.

It is therefore important to check that the theoretical
estimates of the minimum scattering angle match those de-
termined empirically. Although Sato and Fehler’s minimum
scattering angle is supported by some numerical studies
(Roth and Korn, 1993) for the scalar-wave cases, it has not
been fully checked for elastic waves. The numerical studies
of elastic waves (Frankel and Clayton, 1986) used the theo-
retical attenuation curve for scalar waves as the reference
curve for determining the minimum scattering angle. How-
ever, since numerical modeling for 3D elastic wave propa-
gation still requires considerable computational expense to
achieve an adequate domain for the assessment of the scat-
tered energy, we confine our study to 2D elastic waves.

For 2D elastic waves, hybrid methods have been used.
Fang and Müller (1996) attempted to formulate the govern-
ing equation in a rational form by incorporating two for-
mulae for scalar waves with both velocity perturbation
(Frankel and Clayton, 1986) and density perturbation (Roth
and Korn, 1993). The coefficients of each term in the rational
form need to be determined for each stochastic medium by
curve fitting to the results from numerical experiments. This
approach of Fang and Müller is based on the fundamental
assumption that the scattering attenuation pattern of elastic
waves is similar to that of scalar waves for the given sto-
chastic medium (e.g., exponential media for Fang and
Müller’s study) and that the minimum scattering angle (hmin)
would be the same (20�) for both acoustic and elastic waves.

To avoid such assumptions, it is important to develop a
fully elastic 2D theory for the variation of scattering atten-
uation as a function of normalized wavenumber for 2D elas-
tic waves to compare with numerical results, and thereby
determine the minimum scattering angle.

It is very important that we have not only a correct der-
ivation and implementation of scattering theory for compar-
isons with numerical results, but also that high-accuracy nu-
merical modeling is available for assessing the value of the
minimum scattering angle. The finite difference method
(FDM) with fourth-order accuracy in spatial differentiation
has been used widely for modeling in random heterogeneous
media due to the convenience in treatment of numerical
models and simplicity in implementation (Frankel and Clay-
ton, 1986; Jannaud et al., 1991; Roth and Korn, 1993; Fang
and Müller, 1996; Frenje and Juhlin, 2000; Fehler et al.,
2000). However, Sato and Fehler (1998) have pointed out
that derivatives in a FDM scheme are computed in the sense
of an average over some grid points in a domain. Therefore,

it is still an open question as to whether the fourth-order
accuracy in spatial differentiation is sufficient for stable and
accurate modeling in random heterogeneous media.

High accuracy in spatial differentiation can be achieved
with the pseudospectral method, and this approach has been
applied in seismic wavefield computation for laterally het-
erogeneous models on upper mantle and global scales (Fu-
rumura et al., 1999). However, it is difficult to achieve a
comparable level of accuracy in the representation of the
free-surface condition of vanishing traction. Yomogida and
Benites (1995) have applied the boundary integral method
for modeling media with randomly distributed cavities. Such
boundary integral methods can deal well with heterogene-
ities inside a medium with irregular interfaces (e.g., cavities,
cracks). The boundary conditions are satisfied by including
effective sources at the boundaries at each time step. For a
homogeneous medium, it is possible to get an accurate time
response because the necessary Green’s functions can be
found analytically. However, it is difficult for the method to
be applied to media with heterogeneous backgrounds (in-
cluding layered media) because the Green’s functions them-
selves need to be found numerically. Recently, the gener-
alized screen propagators (GSP) method has been developed
as a fast computational procedure for modeling of elastic
wave propagation in half spaces with small-scale heteroge-
neities (Wu et al., 2000). However, the approach used in the
GSP method ignores the backscattering process and so is not
suitable for full representation of scattered waves.

In this study, we use a wavelet-based method (WBM:
Hong and Kennett, 2002a,b) as an accurate and stable sim-
ulator of elastic wave propagation in random media. The
accuracy and the stability of the method is addressed by
comparisons with the FDM. The WBM is then applied to
calculate synthetic seismograms for several styles of sto-
chastic media, from which the scattering attenuation is mea-
sured. The nature of the scattering needs to be taken into
account to get accurate estimates of the attenuation, since in
large-scale heterogeneity, significant deviations in the pri-
mary wave field mean that both components of motion need
to be considered for a 2D medium. With accurate modeling
we are able to place constraints on the minimum scattering
angle for 2D elastic waves to the span of 60�–90�.

Derivation of from Single Scattering Theory�1Qs

We estimate the scattering attenuation factors ( ) as�1Qs

a function of normalized wavenumber (ka) based on single
scattering theory in 2D random heterogeneous media, where
k is the wavenumber of incident waves and a is the corre-
lation distance.

We represent the wavefield (uj, j � x, z) as composed
of primary waves ( , j � x, z) and scattered waves ( ,0 su uj j

j � x, z). The primary waves in 2D elastic media satisfy the
relationships
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Figure 1. The scattering of the primary incident
waves at the scatterer dS, a part of the whole hetero-
geneous area S. h is the scattering angle from the in-
cident direction of primary waves along the z axis. x,
x� are the location vectors for the receiver and a scat-
terer. r links the scatterer to the receiver.

2 0 0 0 2 0 0 0� u �r �r � u �r �rx xx xz z xz zz
q � � , q � � , (1)0 02 2�t �x �z �t �x �z

where

0 0�u �ux z0r � (k � 2l ) � k ,xx 0 0 0�x �z
0 0�u �ux z0r � k � (k � 2l ) , (2)zz 0 0 0�x �z

0 0�u �ux z0r � l � ,xz 0 � ��z �x

k0 and l0 are Lamé coefficients, and q0 is the density in the
background medium. When vertically incident (z-axis direc-
tion) plane P waves (Fig. 1) are considered as the primary
waves, they are represented as

0 0 i(k z�xt)
�u � 0, u � e , (3)x z

where x is the angular frequency, k� is the wavenumber of
incident P waves (x/�0), and �0 is the background P veloc-
ity. The scattered waves can be represented using body
forces (j � x, z or 1, 2) arising from the scattering effectssf j

of the variation of physical parameters,

2 s s s� u �r �rx xx xz sq � � � f ,0 x2�t �x �z (4)
2 s s s� u �r �rz xz zz sq � � � f .0 z2�t �x �z

The body forces in equation (4) can be found from thesfj
primary waves and the fluctuation of physical parameters as
(cf. Sato and Fehler, 1998, equation 4.35)

�s 0 s 2 2f � �ik (dk) u , f � � k (� dqx � z z � 0��x
� 0� dk � 2dl) � ik (dk � 2dl) u . (5)� z��z

From empirical studies (Birch, 1961, Shiomi et al., 1996)
on the perturbations of elastic wave velocities and mass den-
sity in real media that display a linear relationship among
the parameters, we can represent the perturbations concisely
in general by introducing a fractional-fluctuation term n(x,z)
as (Roth and Korn, 1993, Sato and Fehler, 1998, Section
4.2.2)

d� db 1 dq
n(x, z) � � � (6)

� b K q0 0 0

where �0 is the P-wave velocity in the background medium,
b0 is the S-wave velocity, and K is a constant that controls
the magnitude of the density fluctuations. Hereafter we use

symbols without the subscript 0 to represent the background
medium to simplify the mathematical expressions. Equation
(5) can be rewritten from equation (6) as

�ns 2f � �ik � qC exp [i(k z � xt)],x � 1 ��x (7)
�ns 2 2 2f � 2k � qn � ik � qC exp [i(k z � xt)],z � � 2 �� ��z

where C1 and C2 are constants given by

22b
C � (K � 2) 1 � , C � K � 2. (8)1 2� 2 ��

The solution of (j � x, z or 1, 2) in equation (4) can besuj

expressed using the Green’s function in the frequency do-
main, G¢jk(x, x�) and body forces by an integral over the area
of heterogeneity S as (Roth and Korn, 1993)

2
s s ¢u (x) � f (x�)G (x, x�) dS(x�), j � 1, 2. (9)j � k jk�

Sk�1

The Green’s function (Gjk, j, k � 1, 2) for 2D elastic wave
equations (1) for a vertically directed point force can be writ-
ten as (Burridge, 1976, p. 115)
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2 2 21 H(t � r/�)G (2t � r /� ) sinhcosh12 � 2 2 2 2 2 2� � 2 � � 2 2 2G t cos h � (t � r /� ) sin h4pqr22 t � r /��
2 2 21 H(t � r/b)(�2t � r /b ) sinh cosh

� ,2 2 2 2 2 22 � � 2 2 2t sin h � (t � r /b ) cos h4pqr t � r /b�
(10)

where h is the angle between vertical axis (z) and wave prop-
agation direction and H(t) is the Heaviside step function. In
this case, the far-field P and S waves can be written simply
as

PG cosh sinh H(t � r/�)12
� , (11)� P � 2 � � 2 2 2G 4p� q cosh22 t � r /��

and

SG sinh �cosh H(t � r/b)12
� . (12)� S � 2 � � 2 2 2G 4pb q sinh22 t � r /b�

We can replace H(t � r/c)/ in equations (11)2 2t � (r/c)�
and (12) with the zeroth-order Hankel function of the first
kind ( ) by using the Fourier transform (F) as (cf., Aki(1)H0

and Richards, 1980, ch. 6; Kennett, 1983, ch. 7)

H(t � r/c) (1)F � ipH (xr/c), (13)0� 	2 2t � (r/c)�

where t � r/c, x is angular frequency and c is a wave ve-
locity. We introduce the wavenumbers of P and S waves as
k� and kb and write r for |x � x�| (Fig. 1), to simplify equa-
tions (11) and (12) to the form

P¢G icosh sinh12 (1)� H (k |x � x�|) , (14)0 �� P � 2 � �¢G 4� q cosh22

and

S¢G isinh �cosh12 (1)� H (k |x � x�|) . (15)0 b� S � 2 � �¢G 4b q sinh22

We assume that the receiver is far away from the scatterers
(i.e., |x| k |x�|; e.g., Roth and Korn, 1993), and then we can
use the asymptotic expansion of Hankel function (Arfken,
1985, p. 618) and approximate 1/|x � x�| by 1/|x| and |x �
x�| by |x| � n•x� where n is the unit vector in x direction.
The approximate Green’s functions take the form

P¢G i 212
�� P � 2¢ �G 4� q pk |x|22 � (16)

p sinhcosh
exp i k |x| � k n •x� � ,� �� � �	 � 2 �4 cos h

and

S¢G i 212
�� S � 2¢ �G 4b q pk |x|22 b (17)

p �sinhcosh
exp i k |x| � k n •x� � ,b b� � �	 � 2 �4 sin h

The Green’s functions for far-field P and S waves for a hor-
izontally directed point force can be obtained in the same
way. We can therefore make a compact representation of the
far-field Green’s functions as

i 2 pP P¢G � exp i k |x| � k n •x� � A (h),jk � � jk2 � � �	�4� q pk |x| 4�

i 2 pS S¢G � exp i k |x| � k n •x� � A (h),jk b b jk2 � � �	�4b q pk |x| 4b
(18)

where (h) and (h) are given byP SA Ajk jk

P 2 PA (h) � sin h, A (h) � sinhcosh,11 12

P P 2A (h) � �sinhcosh, A (h) � cos h,21 22 (19)
S 2 SA (h) � cos h, A (h) � �sinhcosh,11 12

S S 2A (h) � sinhcosh, A (h) � sin h.21 22

The primary waves (P waves in this study) generate both
scattered P and scattered S waves at the boundaries of het-
erogeneities due to wavetype coupling, and therefore the to-
tal scattered wavefield can be represented as a sum ofsuj

scattered P and S waves ( where j � x, z or 1, 2).PP PSu , uj j

From equations (7), (9), (16), and (17), and are givenPP PSu uj j

by

k p�PPu � exp �i xt � k |x| �j �� � �	�8p|x| 4

�nP ik (z�n x�)•�1• C A (h) e dS(x�)1 j� �
S �x (20)

P ik (z�n x�)•�2�2ik A (h) ne dS(x�)� j �
S

�nP ik (z�n x�)•�2� C A (h) e dS(x�) ,2 j � �
S �z

and

3k c p�PSu � exp �i xt � k |x| �j b� � �	�8p|x| 4

�nS ik (z�cn x�)•�1• C A (h) e dS(x�)1 j� �
S �x (21)

S ik (z�cn x�)•�2�2ik A (h) ne dS(x�)� j �
S

�nS ik (z�cn x�)•�2� C A (h) e dS(x�) ,2 j � �
S �z

where we have written c for �/b.
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The integrals in equations (20) and (21) can be simpli-
fied by using integration by parts to yield

3k�PP P P P
1 2 2u � i {C A (h) sinh�2A (h)�C A (h) (cosh�1)}j 1 j j 2 j�8p|x|

p ik (z�n x�)•�� exp �i xt � k |x| � ne dS(x�),�� � �	 �
S4

(22)

and

3 3k c�PS S S S
1 2 2u � i {C A (h)c sinh�2A (h)�C A (h)(c cosh�1)}j 1 j j 2 j�8p|x|

p ik (z�cn x�)•�� exp �i xt � k |x| � ne dS(x�).b� � �	 �
S4

(23)

In this far-field approximation, the scattered P and S waves
can be isolated on a single component (radial or tangential)
by rotation of the coordinate axes (e.g., Sato and Fehler,
1998):

3k�PP PP PPu � sinh u � cosh u � i C (h)r x z r�8p|x|

p ik (z�n x�)•�exp �i xt � k |x| � ne dS(x�),�� � �	 �4 S (24)
3 3k c�PS PS PSu � cosh u � sinh u � i C (h)t x z t�8p|x|

p ik (z�cn x�)•�exp �i xt � k |x| � ne dS(x�),b� � �	 �4 S

where Cr(h) and Ct(h) are

P P PC (h) � sinh {C A (h) sinh � 2A (h) � C A (h) (cosh � 1)}r 1 11 12 2 12

P P P� cosh {C A (h) sinh � 2A (h) � C A (h) (cosh � 1)},1 21 22 2 22

S S SC (h) � cosh {C A (h) c sinh � 2A (h) � C A (h) (c cosh � 1)}t 1 11 12 2 12

S S S� sinh {C A (h) c sinh � 2A (h) � C A (h) (c cosh � 1)}.1 21 22 2 22

(25)

To extract the average scattered energy, we consider an en-
semble average over different realizations of the stochastic
medium for the displacement terms:

3k�PP 2 2�|u | � � [C (h)]r r8p|x|

� �n(x�)n(y�)� exp [ik {e • (x� � y�)� z� �
S S

� n • (x� � y�)}] dS(x�) dS(y�), (26)
3 3k c�PS 2 2�|u | � � [C (h)]t t8p|x|

� �n(x�)n(y�)� exp [ik {e • (x� � y�)� z� �
S S

� cn • (x� � y�)}] dS(x�) dS(y�),

where ez is the unit vector for the z-axis direction. Following
the procedure for scalar waves (Frankel and Clayton, 1986;
Roth and Korn, 1993), we can rewrite equation (26) using
the power spectral density function (k) for the heterogeneity
as

3k S h�PP 2 2�|u | � � [C (h)] P 2k sin ,r r �� 	8p|x| 2 (27)
3 3k c S�PS 2 2 2�|u | � � [C (h)] P k 1 � c � 2c cosh .�t t �� 	8p|x|

The derivation of equation (27) from equation (26) is de-
scribed in detail in Appendix A. The loss factor for scattering
attenuation corresponds to the energy loss per unit area�1Qs

divided by the solid angle (2p) and wavenumber, and so we
can express in terms of the standard deviation (e) of�1Qs

velocity fluctuation in the 2D media by

2e�1 PP 2 PS 2Q � {�|u | � � �|u | �} dA, (28)s r t�2pSk h�

where A is the arc length through which scattered waves
propagate, so that dA is given by rdh (Frankel and Clayton,
1986).

An approximation for the scattering loss factor can�1Qs

be made by restricting the angular range over which the sin-
gle scattering theory is applied. For an angular span (�hmin

about the forward direction) we represent the true multiple
scattering effects via a travel-time correction. Since the scat-
tered angles of PP and PS waves from a heterogeneity are
different, we introduce for the P-wave-type scatteringPhmin

and for the S-wave-type scattering. Then we can rep-Shmin

resent with the approximate travel-time correction as�1Qs

P2 2p�hminre�1 PP 2Q � �|u | � dhs r��P2pSk hmin�
S2p�hmin

PS 2� �|u | � dh . (29)t� �Shmin

When |x| is large enough, we can assume |x| � r. Also,
can be represented in terms of by using the Snell’sS Ph hmin min

law; for PP scattered waves reflected with the minimum
scattering angle from the boundary of heterogeneity, thePhmin

corresponding reflection angle of PS scattered waves can be
calculated for single scattering as (see Fig. 2)

S Ph � h � (� � � ), where �min min P S P
Pp � h sin�min P�1� , � � sin . (30)S � �2 c

Therefore, when we set k� to be k, to be hmin, and D�Phmin

to be (�P � �S), the approximate relationship between
and ka for elastic waves is given with implicit depen-�1Qs

dence on a through P by
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Figure 2. The determination of the minimum scat-
tering angle for S waves in terms of usingS Ph hmin min

Snell’s law. P wave is incident with angle �P to the
normal to the surface of heterogeneity and the PP
scattered wave is reflected at the surface with angle

to the incident direction (z-axis direction in thisPhmin

study). The PS scattered wave is reflected on the sur-
face with angle �S to the normal and to the in-Ssmin

cident direction.
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Figure 3. Comparison of theoretical scattering at-
tenuation (Q�1) curves with the minimum scattering
angle (hmin) of 30� for scalar waves and elastic waves
with various ratios (c � 1.17, 1.75, 3.5, 5, 7) of P-
and S-wave velocities in von Karman random media
with the Hurst number (�) of 0.25. The reference P-
wave velocity is set at 6.74 km/sec. The theoretical
curves for elastic waves are highly dependent on the
velocity ratio.

�1 2 2p�hminQ k hs 2� [C (h)] P 2k sin dhr2 2 � � 	e (4p) h 2min

2 2 2p�h �Dmin �k c 2 2� [C (h)] P k 1�c �2c cosh dh.�t2 � � 	(4p) h �Dmin �

(31)

Comparison with Results from Scalar Wave
Approximation

We have derived the scattering attenuation formula for
2D elastic waves in terms of normalized wavenumber (ka)
for stochastic media where the physical parameters (Lamé
coefficients and density) are varied randomly. There are sig-
nificant differences in the characteristics of elastic waves and
scalar waves, particularly in radiation patterns associated
with scattering, the phase coupling on a boundary of hetero-
geneity, and the differences in the frequency content of P
and S waves. We therefore expect noticeable differences in
the scattering induced for scalar and elastic waves.

We compare the scattering attenuation formula for elas-
tic waves with that for scalar waves (Frankel and Clayton,
1986) and discuss possible problems when the theoretical
attenuation curve for scalar waves is used instead of that for
elastic waves. For convenience, we consider a case only with
velocity perturbations, such as K � 0 in equation (6). The
theoretical scattering attenuation formula as a function of ka
for scalar waves is then given by (Frankel and Clayton,
1986; Frenje and Juhlin, 2000)

2 2 pk e h�1Q � P 2k sin dh, (32)s � � 	p h 2min

where e is the standard deviation of the velocity perturbation.
The theoretical expression for the scattering attenuation

for elastic waves in equation (31) includes both the wave-
number for P waves and the ratio (c) of P- and S-wave ve-
locities, which means that the Poisson’s ratio is an important
factor in the scattering process of elastic waves. This is il-
lustrated in Figure 3, where we compare the theoretical scat-
tering attenuation curves for elastic waves with different
P/S velocity ratios (c) for a random medium with a von
Karman distribution with a Hurst number (�) of 0.25. We
consider a constant background P-wave velocity of 6.74 km/
sec. In the figure, the elastic scattering curves are plotted
together with the curve for scalar waves for which hmin is
30�. There is a significant dependence of the scattering at-
tenuation behavior as a function of the velocity ratio c as c
is increased, the normalized wavenumber for the peak atten-
uation is reduced and also the magnitude of the attenuation
tends to increase. Although the attenuation curve for scalar
waves displays a similar pattern to that for elastic waves with
c � 1.75, which is a plausible velocity ratio in the crust, the
attenuation levels for elastic waves are smaller than those
for scalar waves for large ka. It is therefore preferable to

derive scattering attenuation relations directly for elastic
waves rather than rely on the scalar wave results.

Wavelet-Based Method

Hong and Kennett (2002a,b) have introduced a wavelet-
based method (WBM) for numerical modeling of elastic
waves and have discussed its features in some detail. We
therefore summarize the basic scheme of the method and
demonstrate its merits for modeling random media with sig-
nificant velocity variation.
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One of the advantages of working with wavelets is the
confinement in space and time domains; this allows the rep-
resentation of differentiation of a function to arbitrary ac-
curacy using a set of wavelet bases (i.e., differential opera-
tors are treated using wavelets; Beylkin, 1992). To exploit
these wavelet forms for numerical differentiation, we recast
the governing elastic wave equations as a set of linked first-
order partial differential equations in time by implementing
a velocity-displacement formulation. The vector equation
system can then be solved with a recursive discrete time
solution with the help of a semigroup approach and a Taylor
expansion for the exponential function with a matrix oper-
ator. Although an approximation of the Taylor expansion is
needed to obtain the discrete time solution, the approxima-
tion order controls the size of the time step, not the accuracy
of numerical responses of elastic waves. One of the outstand-
ing characteristics of WBM, compared with Fourier meth-
ods, which can also achieve high accuracy differentiation, is
that WBM can implement the free-surface condition exactly
and easily by the use of equivalent force terms. These equiv-
alent force terms do not distort the energy conservation of
the system so the system is stable in time.

We now consider some aspects of numerical modeling
to display the efficiency of the WBM as a simulator of elastic
wave propagation in random media. In every numerical
method, to achieve accurate and stable results without nu-
merical dispersion requires the size of the grid steps to de-
pend on the frequency content of source time function and
the wave velocities in the medium. In particular, the number
of grid points needed for the smallest expected wavelength
expected in the media will determine the size of the required
grid and the consequent computational effort. Hence the
number of grid points per wavelength is often used to present
the efficiency of given method as a numerical simulator (Ko-
matitsch and Vilotte, 1998). The fourth-order FDM requires
at least 10 grid points per wavelength in models with strong
impedance contrast between layers (Shapiro et al., 2000),
while WBM using Daubechies-20 wavelets needs 3 grid
points per wavelength (see Hong and Kennett, 2002a). These
grid steps are sufficient to produce stable and accurate results
in simple media. However, it is necessary to check whether
these methods can generate accurate responses in complex
media such as random media. In complex media, we expect
sharp changes in physical parameters between gird points
and so resolution of physical changes is an important issue,
as is the accuracy of differentiation.

We first consider the process of differentiation in a ran-
dom medium and then present examples of WBM modeling
in the presence of very strong heterogeneity. In a random
medium we can expect strong variations in properties, and
we can simulate the effects by taking discrete samples of a
rapidly varying function f (x) on 1D domain x for example,
f (x) can be considered as a displacement field combined with
highly perturbed Lamé coefficients (e.g., kux) in the media.
We use the functional form (Fig. 4a):

x3f(x) � x sin(x x) exp � , (33)� � �2

and the analytic derivative f �(x) is (Fig. 4b)

x3 7/2f �(x) � x cos(x x) exp �� � �2 2
x12 3� (3x � x ) sin(x x) exp � , (34)� � �2 2

where 0 � x � 20 and x corresponds to the dimensionless
distance in the domain. For the numerical differentiation, we
implement both the fourth-order FDM and the WBM. When
the signal f (x) is considered on a sufficiently dense grid sys-
tem (e.g., number of grid points Nx � 256, grid step dx �
0.0781), both numerical estimates of the derivative (f �(x))
are apparently coincident with the analytical solution. How-
ever, for a sparser grid system with Nx � 64 (dx � 0.3125),
the derivative estimates from the FDM exhibit attenuated
amplitudes while WBM generates correct responses. This
example of the differentiation of f (x) on the sparse grid sys-
tem would correspond physically to the situation of a me-
dium with high fractional fluctuation or where diverse strong
heterogeneities are present in a given area. Thus, FDM may
generate attenuated results for fine-scale heterogeneities or
when a high fractional fluctuation is considered in the ran-
dom media.

This phenomenon has previously been reported in a
study based on FDM for modeling in random media; Jan-
naud et al. (1991) have shown that the measured scattering
attenuation rates exhibit high attenuation relative to the the-
oretically expected rates when a high fractional fluctuation
is considered in the random media (e � 10%, 20% in their
study). However, there was good agreement between nu-
merical and theoretical results for the case of a weakly per-
turbed medium (e � 4%). In the presence of high levels of
fluctuations, the smoothness assumptions underlying the
FDM forms of the numerical operators for differentiation
break down, with the result that artificially attenuated wave-
fields are produced. The WBM, on the other hand, considers
the differentiation of the whole data at all grid points through
wavelet decomposition on a set of spaces (i.e., the variations
of high-frequency content and low-frequency content are
handled in separate spaces but at the same time) and there-
fore retains accuracy throughout the domain without accu-
mulating numerical errors across the grid.

As a further demonstration of the efficacy of the WBM,
we consider the stability of the calculations for highly per-
turbed media. For this test, two kinds of models with high-
velocity perturbations are considered: (1) a pointwise ran-
dom medium (Fig. 5a) where wave speeds vary randomly
with the Gaussian probability distribution with a standard
deviation of velocity perturbation of 20% and (2) a system-
atic random medium generated by von Karman autocorre-
lation function (ACF) with a Hurst number (�) of 0.25 (Fig.
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Figure 5. Representation of (a) a pointwise ran-
dom heterogeneous medium with a standard deviation
of velocity perturbation of 20% and (b) a stochastic
random heterogeneous medium generated by von
Karman ACF with the Hurst number (�) of 0.25, a
correlation distance of 100 m and a standard deviation
of velocity perturbation of 52%.

5b), a correlation distance of 100 m, and a standard deviation
of velocity perturbation of 52%. The maximum value of the
velocity perturbations reach 98% for the pointwise medium
and 92% for the von Karman medium. For such high levels
of perturbation, the conventional FDM is subject to strong

dispersion in the numerical results (M. Roth, personal
comm., 2001).

The reference P- and S-wave speeds for the WBM cal-
culation are 3.5 and 2.0 km/sec, and a vertically directed
point force is applied at depth 1500 m in a 10 � 5 km2

domain. Forty-two receivers deployed at the free surface col-
lect the time responses. Despite the large variations in the
physical parameters, the WBM generates stable time re-
sponses with large coda waves following the main phases
for both the pointwise and stochastic random heterogeneous
media (Fig. 6). Since the scattering effects depend on both
the frequency content of source time function and the scale
of heterogeneities, the coda waves in pointwise random me-
dia are smaller than those in the stochastic random media.

These two experiments demonstrate that the WBM can
generate accurate and stable results in even strongly hetero-
geneous random media. We are therefore able to undertake
the simulation of elastic wave propagation in different styles
of random heterogeneous media and measure the scattering
attenuation factors by assessing the scattered energy.

Construction of Stochastic Random Media

A number of studies have been made of the theoretical
conditions on media so that the scattering of elastic waves
can be represented effectively with the first-order Born ap-
proximation, that is, single scattering (Kennett, 1972; Aki
and Richards, 1980; Hudson and Heritage, 1981; Wu and
Aki, 1985). When comparisons are to be made with the re-
sults of numerical models, it is particularly important that an
exact representation is made of a specific random medium.
Recently, Frenje and Juhlin (2000) have presented theoreti-
cal conditions for implementation of a valid correlation dis-
tance in a discretized spatial medium. They have derived the
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Figure 6. Time responses of the horizontal components of displacement at the free
surface receivers for the highly perturbed models shown in Figure 5: (a) the pointwise
random medium and (b) the stochastic random medium.

conditions between the grid steps (dx, dz) and the correlation
distance (a) on the basis that the minimum wavenumber
( � 2p/lj, j � x, z, lj � length of domain in j direction)jkmin

is smaller than the corner wavenumber (kc � 1/a), and the
Nyquist wavenumber ( � p/dj, j � x, z) is larger thanjknyq

the corner wavenumber. However, models based on the au-
tocorrelation function (ACF) do not depend on the corner
wavenumber (Mai and Beroza, 2002), and so it is necessary
to check the suitability of a specific random medium by con-
sidering both the limits on the accuracy of the numerical
differentiation and the representation of the medium with a
given correlation distance. The accuracy requirement deter-
mines the smallest acceptable size of the heterogeneities in
domain, and the physical limits of the model control the
maximum acceptable size.

The WBM will remain stable in a pointwise medium
with large fluctuations for correlation distances down to a
� max{dx, dz}/8. The FDM needs a correlation distance that
is sufficiently large compared with the grid steps (i.e., max-
{dx, dz} K a; see Frenje and Juhlin, 2000). The physical
limit comes from the confinement in size when using a lim-
ited number of grid points to represent the medium. When
random heterogeneities with large correlation distance are
placed in a relatively small medium, the heterogeneities be-
have as a “virtual structure” and generate biased results (e.g.,
Frankel and Clayton, 1986). Therefore, it is necessary to
check whether the fractional fluctuation of physical param-
eters generated by a model is appropriate for the numerical
representation of given random medium.

For this purpose, we introduce a measure of “random-
icity rate” (CN), which is will be close to zero when the
domain is sufficiently large compared with the heterogene-
ities. We define

|N � N |� �C � 	 0, (35)N N � N� �

where N� and N� are the numbers of grid points with posi-
tive and negative random values for the fractional fluctuation
of physical parameters. When the domain is large enough,
the positive and negative random values are distributed ho-
mogeneously (i.e., N� 
 N� in the domain) and CN be-
comes close to 0.

In addition to these conditions, the distance from source
to receiver is another important factor for the accurate mea-
surement of scattering attenuation; since waves propagating
through a random medium experience focusing and defo-
cusing effects, the travel times and amplitudes of waves re-
corded at short distances from the source are very variable
(Hoshiba, 2000). The time responses for short distances are
thus not very suitable for a quantitative study. We therefore
endeavored to set the receivers at a sufficient distance that
the influence of the heterogeneity tends to minimize the var-
iations in amplitudes between different receivers. For this
purpose we introduced a domain that is composed of 512-
by-512 grid points corresponding to 77 � 77 km2 (dx � dz
� 150.3 m) in physical space (Fig. 7). The plane P-wave
source is located at the 70th grid point from the bottom
boundary CB (i.e., z � 10.5 km), and the receivers are set
at the 70th grid point from the top boundary CT. The 128
receivers are deployed horizontally with uniform spacing at
every fourth grid point (i.e., x � 0.6 km). The reference
compressional wave velocity (�0) is 6.74 km/sec, the shear
wave velocity (b0) is 3.85 km/sec, and the density (q0) is 2.9
g/cm3, which are typical crustal values (cf., Kennett et al.,
1995). The source time function is a Ricker wavelet with
dominant frequency (f c) 4.5 Hz. The top and bottom artificial
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Figure 7. Configuration of a 2D unbounded me-
dium with 128 receivers (●) placed with uniform in-
terval (602 m) at 10.5 km from the top boundary (CT).
A plane P-wave source (�) is located at 10.5 km
from the bottom boundary (CB). The reference com-
pressional (�0) and shear (b0) wave velocities are 6.74
and 3.85 km/sec, and the reference density (q0) is 2.9
g/cm3. The top and bottom artificial boundaries (CT,
CB) are treated by absorbing boundary conditions and
the left and right boundaries (CL, CR) are considered
with periodic boundary conditions.

boundaries (CT, CB in Fig. 7) are treated with absorbing
boundary conditions, and the other boundaries (CR, CL) by
periodic boundary conditions to imitate a domain with the
unlimited horizontal length. For more detail of implemen-
tation of absorbing boundary conditions and periodic bound-
ary conditions, refer to Hong and Kennett (2002a,b).

We constructed stochastic random media using von
Karman, exponential, and Gaussian autocorrelation func-
tions (ACF, N(r)) and their power spectral density functions
(PSDF, (k)). The von Karman ACF and PSDF in 2D media
are (e.g., Sato and Fehler, 1998)

�1 r r
N(r) � K ,���1 � � � �2 C(�) a a (36)

24p�a
P(k) � ,2 2 ��1(1 � k a )

where r is a spatial lag, a is the correlation distance, � is the
Hurst number, C is the Gamma function, k is a wavenumber,
and K� is the modified Bessel function of order �. The ex-
ponential ACF and PSDF are

22pa�r/aN(r) � e , P(k) � , (37)2 2 3/2(1 � k a )

and the Gaussian ACF and PSDF are given by

2 2 2 2�r /a 2 �k a /4N(r) � e , P(k) � pa e . (38)

Note that the exponential ACF corresponds to the von Kar-
man ACF with Hurst number 0.5.

To generate the stochastic random models, we use the
PSDF, the spectrum of the ACF, in the wavenumber domain
(Roth and Korn, 1993) and assign random numbers distrib-
uted evenly between �p and p to the phase U (kx, kz) at
each point (kx, kz). The fractional fluctuation of velocities in
the wavenumber domain (kx, kz) is then expressed asn̄

iU(k ,k )¯ x zn(k , k ) � l l P(k )e , (39)� �x z x z r

where kr is the root mean square of kx and kz, and lj (j � x,
z) is the extent of the medium in the j direction. The resultant
fractional fluctuation of the velocities in spatial domain n(x,
z) in equation (6) is obtained by 2D Fourier transforms. We
consider 10% standard deviation e for the wave-speed per-
turbation, and following Sato (1984) set K � 0.8 in equation
(6) to control the perturbation level for the density.

Scattering Patterns and Process

We undertook numerical modeling of elastic waves in
stochastic heterogeneous media with three different styles:
(a) generated by von Karman ACFs with � � 0.05 and 0.25,
(b) exponential ACF (corresponding to von Karman ACF
with � � 0.5), and (c) a Gaussian ACF. Each type of random
media is considered for six different values of the correlation
distances (a � 34, 85.4, 214.5, 538.7, 1353.2, 3399 m). In
this situation, the normalized wavenumbers (kda) for the
dominant frequency (4.5 Hz in this study) of incident waves
are 0.14, 0.36, 0.90, 2.26, 5.68, and 14.26. The scattering
attenuation for each case is measured from a band of nor-
malized wavenumbers including kda. The smallest correla-
tion distance implemented in this study, a � 34 m, satisfies
the required condition, a � max{dx, dz}/8, for the applica-
tion of the WBM. In Table 1, we present the randomicity
rate (CN) for each of the simulations. The CN values increase
with the size of correlation distances in von Karman and
exponential media, but for the simulation of Gaussian media
show a complicated pattern (see, CN values for Gaussian
media at a � 538.7 m).

To obtain a good assessment of the scattering attenua-
tion we needed to take into account the nature of the scat-
tered signal. For vertically incident plane P waves on media
with small-scale heterogeneities, the primary waves are
mostly recorded at the z component and the x component
contains mostly scattered waves (see Fig. 8). In this case,
the scattering attenuation can be measured by considering
the energy loss of the incident waves on z-component re-
cords. However, in a medium with large-scale heterogeneity,
there can be significant deviations in the directions of the
primary waves. Thus, for example, in the synthetic seismo-
grams for the Gaussian random medium with a � 1353.2,
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Table 1
Numbers of Grid Points with Positive and Negative Values (N�, N�) for the Random Variation

for the Reference Physical Parameters of the Stochastic Random Media and the Randomicity
Rate CN as a Function of the Correlation Distance (a)

a(m) 34 85.4 214.5 538.7 1353.2 3399

● von Karman (� � 0.05)
N� 131550 131545 131659 132080 132893 135024
N� 130594 130599 130485 130064 129251 127120
CN 0.0036 0.0036 0.0045 0.0077 0.0139 0.0302

● von Karman (� � 0.25)
N� 131522 131551 131796 132395 133365 136339
N� 130622 130593 130348 129749 128779 125805
CN 0.0034 0.0037 0.0055 0.0101 0.0175 0.0402

● von Karman (� � 0.5, exponential)
N� 131422 131542 132002 132548 133591 137422
N� 130722 130602 130142 129596 128553 124722
CN 0.0027 0.0036 0.0071 0.0113 0.0192 0.0484

● Gaussian
N� 131383 131389 131637 132164 131641 132593
N� 130761 130755 130507 129980 130503 129551
CN 0.0024 0.0024 0.0043 0.0083 0.0043 0.0116

7.5

8

8.5

9

9.5

10

10.5

0 10 20 30 40 50 60 70 80

T
im

e 
(s

)

Range (km)

Z

7.5

8

8.5

9

9.5

10

10.5

0 10 20 30 40 50 60 70 80

T
im

e 
(s

)

Range (km)

X

Figure 8. Synthetic seismograms from the modeling in the von Karman random
media with � � 0.25 and a � 214.5 m. Random scattered waves are developed fol-
lowing the primary waves in z-component seismograms, and mainly scattered waves
are recorded on the x component.

3399 m (Fig. 9), the primary waves recorded on the z com-
ponent display a systematic change of amplitudes and arrival
times, which is also mirrored on the x-component seismo-
grams. A similar phenomenon is found in seismograms from
von Karman (also exponential) random media with large
scale of heterogeneities (see Fig. 10), where systematically
deviated waves develop clearly ahead of the scattered coda.
However, the systematic variation becomes noticeably re-
duced for a von Karman medium with small value of Hurst
number (see Fig. 11). The level of scattered waves generated
is related to the spectral filtering introduced by the particular

autocorrelation function (Klimeš, 2002). For example, there
are less scattered waves for a Gaussian media with a large
correlation distance because the band of wavenumber cou-
pling scales as 1/a.

The scattering attenuation rate is measured in from the
seismograms calculated for the random media using a spec-
tral ratio approach (Aki and Richards, 1980):

2c A (x)0�1Q (x) � ln , (40)s � 	xr A (x)r
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Figure 9. Synthetic seismograms from the modeling in Gaussian random media
with a � 3399 m. The seismograms are composed of mainly primary waves without
random scattered waves. The primary waves are recorded on both x and z components
since the waves deviate from the incident direction due to influence of the large scale
of the heterogeneity.
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Figure 10. Synthetic seismograms from the modeling in exponential random media
with a � 1353.2 m. The primary waves are recorded on both x and z components with
background random scattered waves.

where c is the wave speed, r is the spatial lag, and A0(x)
and Ar(x) are spectral amplitudes of waves for angular fre-
quency x at the origin and at the receiver. The spectral am-
plitudes of the primary waves are estimated by stacking 128
seismograms in the frequency domain. These seismograms
are tapered in the time domain using a “cosine bell” (Kan-
asewich, 1981), (Fig. 12) to isolate primary waves from scat-
tered waves. The time length L1 and L2 are measured from
the maximum amplitude position (Pmax), and M controls the
tapering rate at the edges of the window.

The parameters of the tapering need to be adapted to
the nature of the seismograms, and so we used a constant
size of cosine bell with L1 � 0.22 sec, L2 � 0.18 sec, for
the calculations with kda � 0.14, 0.36, 0.90, and 2.26; for
the other cases (i.e., kda � 5.68, 14.26) we used L1 � 0.22
	 0.5 sec, L2 � 0.18 	 0.5 sec. M kept constant at 0.07
sec. For cases with large-scale heterogeneity, it is necessary
to consider both the x- and z-component data. As indicated
in Figure 13, the amount of energy on the x component is
too large to be ignored in estimates of scattering attenuation,
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Figure 11. Synthetic seismograms from the modeling in the von Karman random
media with � � 0.05 and a � 3399 m. The primary waves is not discernible and
mainly random scattered waves are recorded on the x component even the heterogeneity
(cf., Fig. 10).
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Pmax

Figure 12. The cosine bell window for tapering
seismograms in time domain. Pmax is the point where
the amplitude of seismogram is largest, L1 and L2 de-
termine the window size, and M controls the tapering
rate at the ends of windows.

since otherwise we would get an exaggerated loss by con-
sidering only the z component.

Therefore, in some case, such as Gaussian and expo-
nential media with kda � 5.68, 14.26, and von Karman me-
dia with � � 0.25 and kda � 14.26, the scattering attenu-
ation is measured by using dual component data and
compared with single-component processing. The dual-
component processing uses the sum of spectral amplitudes
of x- and z-component seismograms (cf. Fig. 13). However,
since the data on the x component are composed of both
scattered and primary waves, appropriate tapering is re-
quired. For each case, the scattering attenuation is measured
for a range of frequency from 2 to 9.5 Hz, and the results
are displayed around the corresponding kda in the ��1Qs

ka diagram.

Comparisons between Theory and
Numerical Results

The scattering attenuation for the stochastic random me-
dia is measured from the synthetic seismograms for each
case and compared with theoretical results in Figure 14. Sat-
isfactory results from a single realization of a stochastic me-
dium can be obtained when CN � 0.05. The cases with the
different normalized wavenumbers are indicated by different
symbols: an open triangle for kda � 0.14, a filled square for
kda � 0.36, an open circle for kda � 0.90, a star for kda �
2.26, an open square for kda � 5.68, and a filled circle for
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Figure 13. Frequency content of seismograms ob-
tained from modeling in the Gaussian random media
with a � 3399 m. Significant energy of primary
waves is recorded in x component, and the sum of
spectral amplitudes in x- and z-component data re-
cover the spectral amplitudes expected in a homoge-
neous medium.
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a medium with kda � 14.26. The scattering attenuation rates
measured just from z component data are shown by solid
lines, when the symbols represent the use of dual-component
data. The discrepancy between the single- and dual-
component estimates of attenuation increases with the scale
of the heterogeneity and is also dependent on the style of
random media. The Gaussian media displays significant dis-
crepancy and the discrepancy also increases with the value
of the Hurst number implemented in von Karman media
(including exponential media). This reflects the increasing
deviation of the P wave from the incident direction with
increasing a and �. Measurements of single-component data
may therefore give an overestimate of the scattering atten-
uation (especially for a Gaussian random media with large-
scale heterogeneity).

The measured scattering attenuation rates from each set
of data agree well with the trend of the theoretical curves
from single scattering theory. The scattering attenuation val-

ues lie within the band for minimum scattering angles (hmin)
between 60� and 90� for all the random media tested. The
results from modelling for random media with short corre-
lation distances (e.g., kda � 0.14, 0.36, 0.90) show a para-
bolic variation as a function of the normalized wavenumber.

Clearly the minimum scattering angle (hmin) depends on
the particular nature of the stochastic medium but is not less
than 60�. This fully elastic result needs to be compared with
previous studies that have often used scalar approximations.
Sato (1982) predicted hmin to be 29� for scalar waves based
on a cutoff wavelength for decomposition of the fractional
fluctuation into long and short wavelengths at twice of the
dominant wavelength. Recently, Kawahara (2002) gave a
theoretical estimate of hmin as 65� in 2D acoustic media by
considering the phase velocity of travel time corrected mean
waves in high-frequency limit. With a help of numerical
modeling based on FDM, Frankel and Clayton (1986) mea-
sured hmin as 30�–45� in 2D elastic media (von Karman,
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Figure 14. Scattering attenuation factor Q�1 normalized for the variance e2 as a
function of normalized wavenumber ka in the von Karman random media with the
Hurst number (a) � � 0.05, (b) 0.25, (c) 0.5 (corresponding to the exponential random
media) and (d) in the Gaussian random media. The symbols represent the data sets
used for calculation of the scattering attenuation. The scattering attenuation measured
by using single-component data is provided by solid lines for comparison with that
measured by using dual component data. The minimum scattering angle is determined
as lying in the range 60�–90�.
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exponential, Gaussian media), Jannaud et al. (1991) esti-
mated 90� in 2D acoustic Gaussian media with weak per-
turbation (4%) on velocity, Roth and Korn (1993) suggested
20�–40� in 2D anisotropic acoustic media, and recently
Frenje and Juhlin (2000) computed the hmin for 2D and 3D
acoustic media (von Karman, exponential, Gaussian media)
as 10�–20�.

The results of this study are similar to theoretical results
of Kawahara (2002) and also close to the numerical study
based on FDM in weakly perturbed acoustic media (Jannaud
et al., 1991).

Discussion and Conclusions

We established a consistent approach to estimating scat-
tering attenuation for elastic waves using multicomponent
information and fully elastic analytic results. We formulated
the scattering attenuation variation ( ) for 2D elastic�1Qs

waves in terms of normalized wavenumber (ka) for stochas-
tic random media. The theoretical scattering attenuation
rates of elastic waves are highly dependent on the ratio of
P- and S-wave velocities; so it is necessary to use a full
elastic treatment rather than use scalar results as a reference.

Accurate numerical modeling is critical for quantitative
assessment of stochastic media. Through an example of nu-
merical differentiation, we have shown that there is a pos-
sibility of excessive attenuation in rapidly varying media
when the smoothness assumptions built into FDM methods
are violated. We have shown that the wavelet-based method
(WBM) can achieve high accuracy in numerical differenti-
ation and stability in highly perturbed media and so is very
suitable for work on scattering attenuation.

Synthetic seismograms have been computed for four
types of random media (Gaussian, exponential, and von Kar-
man media with � � 0.05, 0.25) with six different correla-
tion distances. Large-scale heterogeneity energy in the pri-
mary waves gets transferred to the perpendicular to the
incident direction; this means that dual-component seismo-
grams are needed for correct measurement of scattering at-
tenuation. For the broad range of stochastic models, the min-
imum scattering angle for elastic waves, derived from
comparison of the WBM with theoretical curves, lies in a
band from 60� to 90�. This range of values is similar to those
presented by Kawahara (2002) and Jannaud et al. (1991) for
2D acoustic media.

The discrepancies in previous results, hmin � 90� in
mildly perturbed media (4%) and 20�–30� in more highly
perturbed media, may well arise from limitations in previous
numerical modeling. The limitations of the FDM can give
rise to overestimates of attenuation in media with strong var-
iations.
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Appendix A

Procedure for Ensemble Average

We consider the ensemble average of the velocity fluc-
tuations in equations (26):

3kPP 2 2�|u | � � [C (h)]r r8p|x|

� �n(x�)n(y�)� exp [ik{e • (x� � y�) � nz� �
S S

• (x� � y�)}] dS(x�)dS(y�),

3 3k cPS 2 2�|u | � � [C (h)]t t8p|x|

� �n(x�)n(y�)� exp [ik{e • (x� � y�) � cnz� �
S S

• (x� � y�)}] dS(x�)dS(y�), (A1)

where ez is the unit vector for the z-axis direction and n is
the unit vector for x direction in equations (16) and (17). We
make a change of variables from x� and y� to p (center-of-
mass coordinate variable) and q (relative coordinate vari-
able) by

p � (x� � y�)/2, q � x� � y�. (A2)

Also, we introduce difference vectors Er and Et to simplify
the integrals for the radial and tangential ensemble average:

E � e � n � (�sinh, 1 � cosh), |E | � 2 sin(h/2),r z r

E � e � cn � (�csinh, 1 � ccosh),t z

2|E | � 1 � c � 2ccosh.�t

(A3)

When we consider the integrals in equation (A1) with vari-
ables p and q, the integration over p yields the area S and
can simplify the resulting equations using Er and Et to the
form

3SkPP 2 2�|u | � � [C (h)] �n(x�)n(y�)� exp [ikE • q] dS(q),r r r�8p|x| S

3 3Sk cPS 2 2�|u | � � [C (h)] �n(x�)n(y�)� exp [ikE • q] dS(q).t t t�8p|x| S

(A4)

The integration over q is simple in a polar coordinate system
(r�, ��):

r� � |q|, dS(q) � r�dr�d��, (A5)

and the ensemble of fluctuation �n(x�)n(y�)� can be repre-
sented by the autocorrelation function (ACF) N(r�) for the
stochastic media. Therefore, equation (A4) can be written
using equations (A3) and (A5) as

3 r�
 ��p�SkPP 2 2�|u | � � [C (h)]r r � �8p|x| r�0 ����p

h
N(r�) exp i2kr� sin cos�� r�dr�d��,� � � 	2

3 3 r�
 ��p�Sk cPS 2 2�|u | � � [C (h)]t t � �8p|x| r�0 ����p

2N(r�) exp ikr� 1 � c � 2c cosh cos���� 	
r�dr�d��. (A6)

We can express the power spectral density for the stochastic
medium in terms of N(r) through a 2D Fourier transform,
which can be recast as a Hankel transform using the the
representation of the zeroth order Bessel function (J0(x)) as
angular integral over the exponential function (cf., Frankel
and Clayton, 1986)

p

exp[ixcos��]d�� � 2pJ (x),0�
�p

(A7)




P(k) � 2p N(r�)r�J (kr�)dr�.0�
0

(A8)
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With these relations we can rewrite equation (A6) as

3k S hPP 2 2�|u | � � [C (h)] P 2k sin .r r � 	8p|x| 2

3 3k c SPS 2 2 2�|u | � � [C (h)] P k 1 � c � 2c cosh ,�t t � 	8p|x|
(A9)

where P(k) is the power spectral density function (PSDF),
spectrum of ACF N(r).
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