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! ABSTRACT

Most numerical techniques for modelling seismic wave propagation encounter
significant difficulties when confronted with media with strong heterogeneity.
However, a wavelet-based approach can provide high accuracy and stability
of spatial differentiation even in highly perturbed media. The wavelet-based
method therefore allows the treatment of localized zones of strong contrast
such as media with a fluid-filled crack.
The accuracy of the method makes it possible to consider seismic waves in a
medium with a weak systematic structure such as subduction zones, where
slabs exhibit mild-velocity contrast to the background and therefore there can
be significant interface waves on the surfaces of the slabs when the source is
close to the slab.
The wavelet-based method also allows an accurate treatment of the scatter-
ing effect of short-scale heterogeneity, as encountered in the crust. The results
indicate that conventional finite difference methods are likely to overestimate
scattering attenuation.

� This poster is based on recent work [1–4] on the wavelet-based method.

1 What do we need to consider for modelling in
complex media with dynamic sources?

� can correct numerical responses be obtained in highly heterogeneous media?

� can complexity in source regions (e.g., heterogeneities, geometry) be treated?

� can realistic dynamic source (e.g., rupture propagation) be considered?

2 Wavelet-based method (WBM)

2.1 Numerical formulation

The 2-D P-SV elastic wave equation system including a body forces term ( � ):
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where � is the displacement vector and � is the stress tensor. Eq. (1) can be
written in the form of first-order differential equation in time with a vector
unknown � :
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where � is � � � �� � � � � � � � � � , the operator matrix � including absorbing bound-
ary conditions is given by
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and � is composed of body forces, � $ � � � - � � $ � � � - � �� . When additional bound-
ary conditions are considered, such as traction-free conditions on a free surface
or inside a medium (e.g., medium with a cavity), these conditions can be rep-
resented via equivalent forces using the stress values on the boundaries, and
are added to body force components in � .
With a semigroup approach, the discrete time solution of (2) is given by
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where1 	 is a discrete time step, � . is the displacement-velocity vector at dis-
crete time 	 . , � . is a vector for forcing terms, and 5 controls the truncation
order in the discrete time solution.

� The procedure of numerical differentiation using wavelets is described in detail in
[1, 2, 5], and the WBM is validated through comparisions with analytic solutions for
some simple problems [1, 2].

3 WBM in random heterogeneous media

3.1 Accuracy test on numerical differentiation
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� left: highly varying input
signal regarded as the varia-
tion of physical parameters in
highly perturbed media

� right: comparison between
results by WBM and 4th-order
FDM, and analytic solutions


 : The WBM generates accurate results while the FDM displays artifitially
attenuated results

3.2 Stability test
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 : The WBM allows high stability even in extremely perturbed media

3.3 Implication in measured scattering attenuation rates

7.5

8

8.5

9

9.5

10

10.5

0 10 20 30 40 50 60 70 80

T
im

e 
(s

)

Range (km)

X

7.5

8

8.5

9

9.5

10

10.5

0 10 20 30 40 50 60 70 80

T
im

e 
(s

)

Range (km)

Z

0.01

0.1

1

0.1 1 10 100

Q
-1

⁄ε2

ka

von Karman ACF (ν=0.25)

5o

15o

30o

60o

90o

� Minimum scattering angle ( = >?@ ) measured by the wavelet-based study in
media perturbed by 10 %: 60-90 %
cf. A. Numerical studies based on FDM

i) in moderately perturbed media (about 10 %) - Frankel & Clayton (1986):

= >?@ =30-45 A , Roth & Korn (1993): 20-40 A , Frenje & Juhlin (2000): 10-20 A
ii) in mildly perturbed media (4 %) - Jannaud et al. (1991): 90 A

B. Analytic study - Kawahara (2002): 65 A


 : Results by FDMs in moderately perturbed media exhibit high attenuation
compared to those by the WBM, which agree with those estimated in mildly
perturbed media and the analytic results. That is, the WBM can generate cor-
rect time responses while FDMs may have artificially attenuated ones.

4 Modelling in a medium with a fluid-filled crack
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� left: a model with a fluid-filled crack and an explosive source

� middle: wave propagation in a homogeneous medium

� right: wave propagation in a randomly perturbed medium


 : The WBM can deal localized zones of strong contrast in the scheme with-
out introduction of additonal boundary conditions.

� WBM can be extended to topography problems [2] using a grid mapping technique.

5 Modelling in a fault zone (rupture propagation)

5.1 Model and snapshots
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with horizontal propagation
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 : Permanent displacements (N) are found in a four-lobed pattern around the
rupture plane, and considerable energy (T) is trapped and propagate along the
fault zone.

� Each fault segment can readily incorporate its own displacement time history.

5.2 Time responses
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� top: (at receivers F � ),
direct P and S waves are
shown clearly on � compo-
nents while trapped waves are
dominant on � components.
Signicant scattered waves are
also displayed.

� middle: (at receivers G � ),
various head waves arrive be-
fore direct phases inside the
fault zone ( � ), and the rup-
ture propagation makes un-
even energy distribution in-
side the fault zone (V-shape
travel time in � ) and disconti-
nuity in wave trains (� ).

� bottom: (at receivers H � ),
various multi-reflected phases
are following direct phases
and trapped waves continu-
ously smear into the back-
ground medium as scattered
waves.


 : The WBM can consider realistic dislocation sources with complex forms
(i.e., undifferentiable in time) of displacement time function in heterogeneous
media in a direct way.

6 Modelling in subduction zones (SH waves)

6.1 Simplified slab models
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= =50 A

6.2 Snapshots
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 : The relative source position plays an important role in wavefront varia-
tion. Significant interface waves and critically reflected waves are observed,
and they affect wave trains recorded in a free surface. In tectonic regions,
hypocenters are naturally close to coherent tectonic structures and initiated
waves are affected severely even by small-contrast structures.

7 Conclusions

For realistic modelling in tectonic regions, where hypocenters are close to (or
inside) tectonic structures, numerical techniques which can deal with dynamic
source process and heterogeneities in source region accurately are needed.
The wavelet-based method (WBM) provides a good representation for a wide
range of such studies. The strong points of the WBM are:

� The WBM has high accuracy and stability, which allow accurate mod-
elling in highly heterogeneous media, and in complex media with strong
contrasts. The WBM provides correct time responses for quantitative ses-
imic studies.

� The WBM can implement complex dynamic sources and can readily
consider different displacement time history at each segment of rupture
plane.

� These sources can be implemented directly in heterogeneous source re-
gion with no need of homogeneity in source regions.
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